Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Blood Advances ; 2022.
Article in English | ScienceDirect | ID: covidwho-1799127

ABSTRACT

Pretransplant respiratory virus infections (RVIs) have been shown to negatively impact hematopoietic cell transplantation (HCT) outcomes. The impact of and need for delay of HCT for pretransplant infection with human rhinovirus (HRV) or endemic human coronavirus (HCoV) (229E, OC43, NL63, and HKU1) remains controversial. We analyzed the impact of symptomatic RVI within <90 days prior to HCT on overall mortality, posttransplant lower respiratory tract disease (LRD), and days alive and out of hospital (DAOH) by day 100 post HCT in multivariable models. Among 1,643 adult HCT recipients (58% allogeneic recipients), 704 (43%) were tested for RVI before HCT and 307 (44%) tested positive. HRV was most commonly detected (56%). Forty-five (15%) of 307 HCT recipients had LRD with the same virus early after HCT. Pretransplant upper respiratory infection (URI) with influenza, respiratory syncytial virus, adenovirus, human metapneumovirus, parainfluenza virus, HRV or endemic HCoV was not associated with increased overall mortality or fewer DAOH. However, in allogeneic recipients who received myeloablative conditioning, LRD due to any respiratory virus, including HRV alone, was associated with increased overall mortality (adjusted hazard ratio 10.8 [95% CI 3.29, 35.1] for HRV and 3.21 [95% CI 1.15, 9.01] for all other viruses). HRV LRD was also associated with fewer DAOH. Thus, the presence of LRD due to common respiratory viruses, including HRV, before myeloablative allogeneic HCT was associated with increased mortality and hospitalization. Pretransplant URI due to HRV and endemic HCoV was not associated with these outcomes. Improved management strategies for pretransplant LRD are warranted.

2.
Vaccines ; 10(4):601, 2022.
Article in English | MDPI | ID: covidwho-1786108

ABSTRACT

Multiple factors may be associated with immune responses to SARS-CoV-2 vaccines. Factors potentially related to magnitude and durability of response include age, time, and vaccine reactogenicity. This study analyzed SARS-CoV-2 IgG spike antibody responses following the second dose of vaccine in healthcare workers (HCWs). Data were collected from participants enrolled in a longitudinal SARS-CoV-2 serology study over a 12-month period. Participants completed a survey documenting symptoms post-vaccination. Serum specimens were tested for SARS-CoV-2 IgG antibodies using the Abbott Architect AdvisdeDx SARS-CoV-2 IgGII assay. Antibody levels were compared against time from second vaccine dose, and symptoms following vaccination. Altogether, 335 women (86.6%) and 52 men (13.4%) participated. Median age was 37 years (IQR 30-43). Overall median antibody level was 2150.80 [1246.12, 3556.98] AU/mL (IQR). Age was not associated with antibody concentration (p-value = 0.10). Higher antibody responses (2253 AU/mL vs. 1506 AU/mL;p = 0.008) were found in HCWs with one or more symptoms after the second dose of the vaccine (n = 311). Antibody responses persisted throughout the study period post-vaccination;statistically significant decreases in antibody responses were observed over time (p < 0.001). Higher antibody response was associated with reactogenicity post-vaccine. Age and sex were not associated with higher antibody responses.

3.
J Infect Dis ; 2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1758748

ABSTRACT

Residents and staff of emergency shelters for people experiencing homelessness (PEH) are at high risk of infection with SARS-CoV-2. The importance of shelter-related transmission of SARS-CoV-2 in this population remains unclear. It is also unknown whether there is significant spread of shelter-related viruses into surrounding communities. We analyzed genome sequence data for 28 SARS-CoV-2-positive specimens collected from 8 shelters in King County, Washington between March and October, 2020. We identified at least 12 separate SARS-CoV-2 introduction events into these 8 shelters and estimated that 57% (16 out of 28) of the examined cases of SARS-CoV-2 infection were the result of intra-shelter transmission. However, we identified just a few SARS-CoV-2 specimens from Washington that were possible descendants of shelter viruses. Our data suggest that SARS-CoV-2 spread in shelters is common, but we did not observe evidence of wide-spread transmission of shelter-related viruses into the general population.

5.
Clin Infect Dis ; 2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1705947

ABSTRACT

BACKGROUND: Immunoassays designed to detect SARS-CoV-2 protein antigens are now commercially available. The most widely used tests are rapid lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 antigen (Ag) assays have also been developed. The overall accuracy of SARS-CoV-2 Ag tests, however, is not well defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best practice guidance related to SARS-CoV-2 Ag testing. This guideline is the third in a series of rapid, frequently updated COVID-19 diagnostic guidelines developed by IDSA. OBJECTIVE: IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and non-medical settings. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on five diagnostic recommendations. These recommendations address antigen testing in symptomatic and asymptomatic individuals as well as assess single versus repeat testing strategies. CONCLUSIONS: Data on the clinical performance of U.S. Food and Drug Administration SARS-CoV-2 Ag tests with Emergency Use Authorization is mostly limited to single, one-time testing versus standard nucleic acid amplification testing (NAAT) as the reference standard. Rapid Ag tests have high specificity and low to modest sensitivity compared to reference NAAT methods. Antigen test sensitivity is heavily dependent on viral load, with differences observed between symptomatic compared to asymptomatic individuals and the time of testing post onset of symptoms. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the diagnostic methods of choice for diagnosing SARS-CoV-2 infection. However, when molecular testing is not readily available or is logistically infeasible, Ag testing can help identify some individuals with SARS-CoV-2 infection. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.

6.
Infectious Disease Clinics of North America ; 2022.
Article in English | PMC | ID: covidwho-1664970
9.
Open forum infectious diseases ; 8(Suppl 1):S93-S93, 2021.
Article in English | EuropePMC | ID: covidwho-1564706

ABSTRACT

Background Sharp declines in influenza and respiratory syncytial virus (RSV) circulation across the U.S. have been described during the pandemic in temporal association with community mitigation for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to determine relative frequencies of rhinovirus/enterovirus (RV/EV) and other respiratory viruses in children presenting to emergency departments or hospitalized with acute respiratory illness (ARI) prior to and during the COVID-19 pandemic. Methods We conducted a multi-center active prospective ARI surveillance study in children as part of the New Vaccine Surveillance Network (NVSN) from December 2016 through January 2021. Molecular testing for RV/EV, RSV, influenza, and other respiratory viruses [i.e., human metapneumovirus, parainfluenza virus (Types 1-4), and adenovirus] were performed on specimens collected from children enrolled children. Cumulative percent positivity of each virus type during March 2020–January 2021 was compared from March-January in the prior seasons (2017-2018, 2018-2019, 2019-2020) using Pearson’s chi-squared. Data are provisional. Results Among 69,403 eligible children, 37,676 (54%) were enrolled and tested for respiratory viruses. The number of both eligible and enrolled children declined in early 2020 (Figure 1), but 4,691 children (52% of eligible) were enrolled and tested during March 2020-January 2021. From March 2020-January 2021, the overall percentage of enrolled children with respiratory testing who had detectable RV/EV was similar compared to the same time period in 2017-2018 and 2019-2020 (Figure 1, Table 1). In contrast, the percent positivity of RSV, influenza, and other respiratory viruses combined declined compared to prior years, (p< 0.001, Figure 1, Table 1). Figure 1. Percentage of Viral Detection Among Enrolled Children Who Received Respiratory Testing, New Vaccine Surveillance Network (NVSN), United States, December 2016 – January 2021 Table 1. Percent of Respiratory Viruses Circulating in March 2020– January 2021, compared to March-January in Prior Years, New Vaccine Surveillance Network (NVSN), United States, March 2017 – January 2021 Conclusion During 2020, RV/EV continued to circulate among children receiving care for ARI despite abrupt declines in other respiratory viruses within this population. These findings warrant further studies to understand virologic, behavioral, biological, and/or environmental factors associated with this continued RV/EV circulation. Disclosures Jennifer E. Schuster, MD, Merck, Sharpe, and Dohme (Individual(s) Involved: Self): Grant/Research Support Marian G. Michaels, MD, MPH, Viracor (Grant/Research Support, performs assay for research study no financial support) John V. Williams, MD, GlaxoSmithKline (Advisor or Review Panel member, Independent Data Monitoring Committee)Quidel (Advisor or Review Panel member, Scientific Advisory Board) Elizabeth P. Schlaudecker, MD, MPH, Pfizer (Grant/Research Support)Sanofi Pasteur (Advisor or Review Panel member) Christopher J. Harrison, MD, GSK (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant) Claire Midgley, PhD, Nothing to disclose Natasha B. Halasa, MD, MPH, Genentech (Other Financial or Material Support, I receive an honorarium for lectures - it’s a education grant, supported by genetech)Quidel (Grant/Research Support, Other Financial or Material Support, Donation of supplies/kits)Sanofi (Grant/Research Support, Other Financial or Material Support, HAI/NAI testing) Natasha B. Halasa, MD, MPH, Genentech (Individual(s) Involved: Self): I receive an honorarium for lectures - it’s a education grant, supported by genetech, O her Financial or Material Support, Other Financial or Material Support;Sanofi (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support

10.
Open forum infectious diseases ; 8(Suppl 1):S345-S345, 2021.
Article in English | EuropePMC | ID: covidwho-1564381

ABSTRACT

Background Antenatal care is a unique opportunity to assess SARS-CoV-2 seroprevalence and antibody response in pregnant people, including those with previously unknown infection. Methods Pregnant people were screened for SARS-CoV-2 IgG during antenatal care or delivery in Seattle, Washington with Abbott Architect chemiluminescent immunoassay which provides quantitative index (positive ≥1.4). Participants with IgG+ results or identified with RT-PCR+ results via medical records were invited to enroll in a longitudinal evaluation of antibody responses. We report preliminary results of an ongoing seroprevalence and longitudinal study with planned 18-month follow-up. Results Between September 9, 2020–May 7, 2021, we screened 1304 pregnant people;62 (4.8%) tested SARS-CoV-2 IgG+, including 28 (45%) with known prior SARS-CoV-2 infection. Among participants testing IgG+, median age was 32 years (interquartile range [IQR] 26–35) and median gestational age was 21 weeks (IQR 12–38) at screening;median IgG index was 3.2 (IQR 2.1–4.9, range 1.4–9.9), including 3.9 (IQR 2.3–5.8) among those with vs. 2.7 (IQR 1.9–4.2) among those without prior RT-PCR+ results (p=0.05 by Wilcoxon rank-sum). Of 30 longitudinal study participants enrolled, 24 tested IgG+ at baseline (75% with prior RT-PCR+ result) and 6 tested IgG- on enrollment but were identified as previously RT-PCR+ via medical records;24/30 (80%) reported previous symptoms. Of 24 participants testing IgG+ at baseline, 14 (58%) had first follow-up IgG results at median of 66 days (IQR 42–104) since initial testing, with median IgG index of 2.0 (IQR 1.0–3.8). 9/14 (64%) participants with repeat IgG testing remained IgG+ at first follow-up (≤280 days after first RT-PCR+ result for those with and ≥104 days after first IgG detection for those without prior RT-PCR+ results), while 5/14 (26%) had a negative Abbott IgG test at a median of 81 days (IQR 75–112) since initial testing. Conclusion Nearly half of pregnant people testing SARS-CoV-2 IgG+ reported no known prior SARS-CoV-2 diagnosis or symptoms. SARS-CoV-2 IgG antibody response and durability in pregnancy has implications for maternal and neonatal protection and susceptibility and highlights potential benefits of vaccination in this population. Disclosures Sylvia LaCourse, MD, Merck (Grant/Research Support) Alisa Kachikis, MD, MS, GlaxoSmithKline (Consultant)Pfizer (Consultant) Alexander L. Greninger, MD, PhD, Abbott (Grant/Research Support)Gilead (Grant/Research Support)Merck (Grant/Research Support) Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant) Alison Drake, PhD, MPH, Merck (Grant/Research Support)

11.
Open forum infectious diseases ; 8(Suppl 1):S805-S806, 2021.
Article in English | EuropePMC | ID: covidwho-1564154

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits antibodies (Abs) that bind several viral proteins such as the spike entry protein and the abundant nucleocapsid (N) protein. We examined convalescent sera collected through 6 months (~24wks) post-SARS-CoV-2 infection in children to evaluate changes in neutralization potency and N-binding. Methods Outpatient, hospitalized, and community recruited volunteers < 18 years with COVID-19 were enrolled in a longitudinal study at Seattle Children’s Hospital. Analysis includes symptomatic and asymptomatic children with laboratory-confirmed SARS-CoV-2 infection who provided blood samples at approximately 4wks (range: 2-18wks, IQR:4-8wks) and 24 wks (range: 23-35wks, IQR:25-27wks) after diagnosis. We measured neutralizing Ab using an in-house pseudoneutralization assay and anti-N binding Ab using the Abbott Architect assay. Results Of 32 children enrolled between April 2020 and January 2021, 27 had no underlying immunocompromised state and 25 of these 27 children had symptomatic disease. Ten of 27 had a > 2-fold decrease neutralization titers between 4 and 24wks (most were < 10-fold);12 had < 2-fold change;and 5 had neutralization titers that increased > 2-fold over time (Fig. 1A). All but one of these 27 children had detectable neutralizing activity at 24wks. Anti-N Abs were assessed for 25 children at 4wks and 17 children at 24wks (data pending for 14 samples);all children with paired samples had a > 1.75-fold Abbott index reduction at 24wks, and 5 children had no detectable anti-N Abs by 24wks (Fig. 2A). An additional 5 children with symptomatic disease had complicating immunosuppression or multiple blood transfusions;2 had decreasing neutralizing titers, 2 increased, and 1 had no change (Fig. 1B). Anti-N Abs were undetectable for one child by 24wks (data pending for 4 samples) (Fig. 2B). No participants received COVID-19 vaccine. Figure 1. Pseusoneutralization titers in children over time. Figure 2. Nucleocapsid-binding antibody titers in children over time. Conclusion We show neutralizing Abs wane to a small degree over 24wks post-SARS-CoV-2 infection and remain detectable in most children. In contrast, anti-N Abs decreased, becoming undetectable in some children by 24wks. These findings add to understanding of the natural history of SARS-CoV-2 immunity in children. * This study was supported by CDC BAA75D301-20-R-67897 Disclosures Jesse Bloom, PhD, Flagship Labs 77 (Consultant)Moderna (Consultant) Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant)

12.
Clin Infect Dis ; 73(11): e4411-e4418, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1561635

ABSTRACT

BACKGROUND: Noninfluenza respiratory viruses are responsible for a substantial burden of disease in the United States. Household transmission is thought to contribute significantly to subsequent transmission through the broader community. In the context of the coronavirus disease 2019 (COVID-19) pandemic, contactless surveillance methods are of particular importance. METHODS: From November 2019 to April 2020, 303 households in the Seattle area were remotely monitored in a prospective longitudinal study for symptoms of respiratory viral illness. Enrolled participants reported weekly symptoms and submitted respiratory samples by mail in the event of an acute respiratory illness (ARI). Specimens were tested for 14 viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using reverse-transcription polymerase chain reaction. Participants completed all study procedures at home without physical contact with research staff. RESULTS: In total, 1171 unique participants in 303 households were monitored for ARI. Of participating households, 128 (42%) included a child aged <5 years and 202 (67%) included a child aged 5-12 years. Of the 678 swabs collected during the surveillance period, 237 (35%) tested positive for 1 or more noninfluenza respiratory viruses. Rhinovirus, common human coronaviruses, and respiratory syncytial virus were the most common. Four cases of SARS-CoV-2 were detected in 3 households. CONCLUSIONS: This study highlights the circulation of respiratory viruses within households during the winter months during the emergence of the SARS-CoV-2 pandemic. Contactless methods of recruitment, enrollment, and sample collection were utilized throughout this study and demonstrate the feasibility of home-based, remote monitoring for respiratory infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Longitudinal Studies , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
13.
Vaccine ; 40(1): 122-132, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1550126

ABSTRACT

INTRODUCTION: Little is known about COVID-19 vaccination intent among people experiencing homelessness. This study assesses surveyed COVID-19 vaccination intent among adult homeless shelter residents and staff and identifies factors associated with vaccine deliberation (responded "undecided") and reluctance (responded "no"), including time trends. METHODS: From 11/1/2020-2/28/21, we conducted repeated cross-sectional surveys at nine shelters in King County, WA as part of ongoing community-based SARS-CoV-2 surveillance. We used a multinomial model to identify characteristics associated with vaccine deliberation and reluctance. RESULTS: A total of 969 unique staff (n = 297) and residents (n = 672) participated and provided 3966 survey responses. Among residents, 53.7% (n = 361) were vaccine accepting, 28.1% reluctant, 17.6% deliberative, and 0.6% already vaccinated, whereas among staff 56.2% were vaccine accepting, 14.1% were reluctant, 16.5% were deliberative, and 13.1% already vaccinated at their last survey. We observed higher odds of vaccine deliberation or reluctance among Black/African American individuals, those who did not receive a seasonal influenza vaccine, and those with lower educational attainment. There was no significant trend towards vaccine acceptance. CONCLUSIONS: Strong disparities in vaccine intent based on race, education, and prior vaccine history were observed. Increased vaccine intent over the study period was not detected. An intersectional, person-centered approach to addressing health inequities by public health authorities planning vaccination campaigns in shelters is recommended. Clinical Trial Registry Number: NCT04141917.


Subject(s)
COVID-19 , Homeless Persons , Adult , COVID-19 Vaccines , Cross-Sectional Studies , Humans , SARS-CoV-2 , Vaccination , Washington
14.
MMWR Morb Mortal Wkly Rep ; 70(47): 1623-1628, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1534933

ABSTRACT

Enterovirus D68 (EV-D68) is associated with a broad spectrum of illnesses, including mild to severe acute respiratory illness (ARI) and acute flaccid myelitis (AFM). Enteroviruses, including EV-D68, are typically detected in the United States during late summer through fall, with year-to-year fluctuations. Before 2014, EV-D68 was infrequently reported to CDC (1). However, numbers of EV-D68 detection have increased in recent years, with a biennial pattern observed during 2014-2018 in the United States, after the expansion of surveillance and wider availability of molecular testing. In 2014, a national outbreak of EV-D68 was detected (2). EV-D68 was also reported in 2016 via local (3) and passive national (4) surveillance. EV-D68 detections were limited in 2017, but substantial circulation was observed in 2018 (5). To assess recent levels of circulation, EV-D68 detections in respiratory specimens collected from patients aged <18 years* with ARI evaluated in emergency departments (EDs) or admitted to one of seven U.S. medical centers† within the New Vaccine Surveillance Network (NVSN) were summarized. This report provides a provisional description of EV-D68 detections during July-November in 2018, 2019 and 2020, and describes the demographic and clinical characteristics of these patients. In 2018, a total of 382 EV-D68 detections in respiratory specimens obtained from patients aged <18 years with ARI were reported by NVSN; the number decreased to six detections in 2019 and 30 in 2020. Among patients aged <18 years with EV-D68 in 2020, 22 (73%) were non-Hispanic Black (Black) persons. EV-D68 detections in 2020 were lower than anticipated based on the biennial circulation pattern observed since 2014. The circulation of EV-D68 in 2020 might have been limited by widespread COVID-19 mitigation measures; how these changes in behavior might influence the timing and levels of circulation in future years is unknown. Ongoing monitoring of EV-D68 detections is warranted for preparedness for EV-D68-associated ARI and AFM.


Subject(s)
Disease Outbreaks , Enterovirus D, Human/isolation & purification , Enterovirus Infections/epidemiology , Population Surveillance/methods , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Adolescent , Child , Child, Preschool , Enterovirus D, Human/genetics , Enterovirus Infections/virology , Female , Humans , Infant , Male , United States/epidemiology
15.
Front Pediatr ; 9: 686386, 2021.
Article in English | MEDLINE | ID: covidwho-1389225

ABSTRACT

In order to assess the presence of respiratory pathogens on "high-touch" surfaces and inform sanitation practices at schools, pre-selected surfaces in elementary schools in Seattle, WA, USA were sampled weekly and tested by RT-PCR for 25 viral respiratory pathogens (including SARS-CoV-2 retrospectively) and S. pneumoniae during 2019-2020 winter respiratory illness season. Viral pathogens (rhinovirus, adenovirus, influenza) known to cause respiratory illness were detected on commonly touched surfaces, especially wooden surfaces, and matched the patterns of circulating virus in the community.

16.
Open Forum Infectious Diseases ; 7(Supplement_1):S170-S171, 2020.
Article in English | PMC | ID: covidwho-1387986

ABSTRACT

Background: A state of emergency was declared in the United States (US) on March 13, 2020 in response to the SARS-CoV-2 pandemic. Healthcare providers had to alter practice patterns and research priorities. We assessed the frequency of acute respiratory illnesses (ARI) in children, notably those due to respiratory syncytial virus (RSV) and influenza, before and during the pandemic. Methods: We conducted multi-center active prospective ARI surveillance in children as part of the New Vaccine Surveillance Network. Children < 18 years with fever and/or respiratory symptoms were enrolled in emergency department and inpatient settings at seven US medical centers over four respiratory seasons during 2016-2020 (Fig 1). Pandemic-related restrictions to patient access limited enrollment in some sites beginning March 2020. Respiratory specimens were collected and tested at each site for RSV and influenza by qRT-PCR. Data were analyzed by calendar weeks. We compared the cumulative proportions of RSV and influenza detection after week 13 in 2020 to the previous seasons using Fisher's exact test. Results: Of 44,247 eligible children, 25,375 (57%) were enrolled and tested for RSV and/or influenza. A total of 6351/25375 (25%) and 3446/25372 (14%) children were RSV and influenza-positive over the four seasons, respectively. In 2020, we noted a rapid drop in eligible and enrolled ARI subjects after weeks 11-13 (Fig 1). During weeks 13-18 in 2016-2019, the three-year average of eligible and enrolled subjects was 1802 and 978, respectively. However, over the same period in 2020, there were 675 eligible and 278 enrolled subjects, representing declines of 62.5% and 71.6% respectively (Fig 1). In 2020, there were no RSV or influenza cases detected in weeks 15-18, and the cumulative proportions of RSV and influenza detection after week 13 were lower compared to previous seasons (p< 0.001) (Figs 1 and 2). Conclusion: There was a considerable decline in ARI visits and the proportion of RSV and influenza detection across seven distinct geographic sites during the pandemic compared with previous seasons. These findings might be attributable to social distancing measures to lessen the spread of SARS-CoV-2, changes in healthcare-seeking behaviors, and limited access to medical care. (Table Presented).

17.
medRxiv ; 2020 Dec 08.
Article in English | MEDLINE | ID: covidwho-1383294

ABSTRACT

Unsupervised upper respiratory specimen collection is a key factor in the ability to massively scale SARS-CoV-2 testing. But there is concern that unsupervised specimen collection may produce inferior samples. Across two studies that included unsupervised at-home mid-turbinate specimen collection, ∼1% of participants used the wrong end of the swab. We found that molecular detection of respiratory pathogens and a human biomarker were comparable between specimens collected from the handle of the swab and those collected correctly. Older participants were more likely to use the swab backwards. Our results suggest that errors made during home-collection of nasal specimens do not preclude molecular detection of pathogens and specialized swabs may be an unnecessary luxury during a pandemic.

19.
Clin Infect Dis ; 2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1280097

ABSTRACT

BACKGROUND: Immunoassays designed to detect SARS-CoV-2 protein antigens are now commercially available. The most widely used tests are rapid lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 antigen (Ag) assays have also been developed. The overall accuracy of SARS-CoV-2 Ag tests, however, is not well defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best practice guidance related to SARS-CoV-2 Ag testing. This guideline is the third in a series of rapid, frequently updated COVID-19 diagnostic guidelines developed by IDSA. OBJECTIVE: IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and non-medical settings. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on five diagnostic recommendations. These recommendations address antigen testing in symptomatic and asymptomatic individuals as well as assess single versus repeat testing strategies. CONCLUSIONS: Data on the clinical performance of U.S. Food and Drug Administration SARS-CoV-2 Ag tests with Emergency Use Authorization is mostly limited to single, one-time testing versus standard nucleic acid amplification testing (NAAT) as the reference standard. Rapid Ag tests have high specificity and low to modest sensitivity compared to reference NAAT methods. Antigen test sensitivity is heavily dependent on viral load, with differences observed between symptomatic compared to asymptomatic individuals and the time of testing post onset of symptoms. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the diagnostic methods of choice for diagnosing SARS-CoV-2 infection. However, when molecular testing is not readily available or is logistically infeasible, Ag testing can help identify some individuals with SARS-CoV-2 infection. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.

20.
Cell Rep ; 36(2): 109353, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1275191

ABSTRACT

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies. One targets the N-terminal domain (NTD), one recognizes an epitope in S2, and 11 bind the receptor-binding domain (RBD). Three anti-RBD neutralizing antibodies cross-neutralize SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency and antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. All four cross-neutralizing antibodies neutralize the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Binding Sites , Cell Line , Cross Reactions , Epitopes/immunology , Female , HEK293 Cells , Humans , Mice , Neutralization Tests , Protein Binding/immunology , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL