Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
MMWR Morb Mortal Wkly Rep ; 70(49): 1700-1705, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1614365

ABSTRACT

The mRNA COVID-19 vaccines (Moderna and Pfizer-BioNTech) provide strong protection against severe COVID-19, including hospitalization, for at least several months after receipt of the second dose (1,2). However, studies examining immune responses and differences in protection against COVID-19-associated hospitalization in real-world settings, including by vaccine product, are limited. To understand how vaccine effectiveness (VE) might change with time, CDC and collaborators assessed the comparative effectiveness of Moderna and Pfizer-BioNTech vaccines in preventing COVID-19-associated hospitalization at two periods (14-119 days and ≥120 days) after receipt of the second vaccine dose among 1,896 U.S. veterans at five Veterans Affairs medical centers (VAMCs) during February 1-September 30, 2021. Among 234 U.S. veterans fully vaccinated with an mRNA COVID-19 vaccine and without evidence of current or prior SARS-CoV-2 infection, serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2 were also compared. Adjusted VE 14-119 days following second Moderna vaccine dose was 89.6% (95% CI = 80.1%-94.5%) and after the second Pfizer-BioNTech dose was 86.0% (95% CI = 77.6%-91.3%); at ≥120 days VE was 86.1% (95% CI = 77.7%-91.3%) for Moderna and 75.1% (95% CI = 64.6%-82.4%) for Pfizer-BioNTech. Antibody levels were significantly higher among Moderna recipients than Pfizer-BioNTech recipients across all age groups and periods since vaccination; however, antibody levels among recipients of both products declined between 14-119 days and ≥120 days. These findings from a cohort of older, hospitalized veterans with high prevalences of underlying conditions suggest the importance of booster doses to help maintain long-term protection against severe COVID-19.†.


Subject(s)
/immunology , Antibodies, Viral/analysis , COVID-19/prevention & control , SARS-CoV-2/immunology , /statistics & numerical data , /administration & dosage , Aged , COVID-19/epidemiology , COVID-19/immunology , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunization Schedule , Male , Middle Aged , Patient Acuity , Time Factors , United States/epidemiology , Veterans/statistics & numerical data , Veterans Health Services
2.
Clin Infect Dis ; 73(10): 1831-1839, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522142

ABSTRACT

BACKGROUND: Monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody prevalence can complement case reporting to inform more accurate estimates of SARS-CoV-2 infection burden, but few studies have undertaken repeated sampling over time on a broad geographic scale. METHODS: We performed serologic testing on a convenience sample of residual serum obtained from persons of all ages, at 10 sites in the United States from 23 March through 14 August 2020, from routine clinical testing at commercial laboratories. We standardized our seroprevalence rates by age and sex, using census population projections and adjusted for laboratory assay performance. Confidence intervals were generated with a 2-stage bootstrap. We used bayesian modeling to test whether seroprevalence changes over time were statistically significant. RESULTS: Seroprevalence remained below 10% at all sites except New York and Florida, where it reached 23.2% and 13.3%, respectively. Statistically significant increases in seroprevalence followed peaks in reported cases in New York, South Florida, Utah, Missouri, and Louisiana. In the absence of such peaks, some significant decreases were observed over time in New York, Missouri, Utah, and Western Washington. The estimated cumulative number of infections with detectable antibody response continued to exceed reported cases in all sites. CONCLUSIONS: Estimated seroprevalence was low in most sites, indicating that most people in the United States had not been infected with SARS-CoV-2 as of July 2020. The majority of infections are likely not reported. Decreases in seroprevalence may be related to changes in healthcare-seeking behavior, or evidence of waning of detectable anti-SARS-CoV-2 antibody levels at the population level. Thus, seroprevalence estimates may underestimate the cumulative incidence of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , Child , Humans , Seroepidemiologic Studies , United States/epidemiology , Utah
3.
Clin Infect Dis ; 73(9): e3120-e3123, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501040

ABSTRACT

We compared severe acute respiratory syndrome coronavirus 2 seroprevalence estimated from commercial laboratory residual sera and a community household survey in metropolitan Atlanta during April and May 2020 and found these 2 estimates to be similar (4.94% vs 3.18%). Compared with more representative surveys, commercial sera can provide an approximate measure of seroprevalence.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Laboratories , Seroepidemiologic Studies , Surveys and Questionnaires
4.
Clin Infect Dis ; 72(12): e1004-e1009, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269561

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in December 2019, with subsequent worldwide spread. The first US cases were identified in January 2020. METHODS: To determine if SARS-CoV-2-reactive antibodies were present in sera prior to the first identified case in the United States on 19 January 2020, residual archived samples from 7389 routine blood donations collected by the American Red Cross from 13 December 2019 to 17 January 2020 from donors resident in 9 states (California, Connecticut, Iowa, Massachusetts, Michigan, Oregon, Rhode Island, Washington, and Wisconsin) were tested at the Centers for Disease Control and Prevention for anti-SARS-CoV-2 antibodies. Specimens reactive by pan-immunoglobulin (pan-Ig) enzyme-linked immunosorbent assay (ELISA) against the full spike protein were tested by IgG and IgM ELISAs, microneutralization test, Ortho total Ig S1 ELISA, and receptor-binding domain/ACE2 blocking activity assay. RESULTS: Of the 7389 samples, 106 were reactive by pan-Ig. Of these 106 specimens, 90 were available for further testing. Eighty-four of 90 had neutralizing activity, 1 had S1 binding activity, and 1 had receptor-binding domain/ACE2 blocking activity >50%, suggesting the presence of anti-SARS-CoV-2-reactive antibodies. Donations with reactivity occurred in all 9 states. CONCLUSIONS: These findings suggest that SARS-CoV-2 may have been introduced into the United States prior to 19 January 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , China , Connecticut , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Iowa , Massachusetts , Michigan , Oregon , Rhode Island , Spike Glycoprotein, Coronavirus , Washington , Wisconsin
5.
Clin Infect Dis ; 73(9): e3120-e3123, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-965463

ABSTRACT

We compared severe acute respiratory syndrome coronavirus 2 seroprevalence estimated from commercial laboratory residual sera and a community household survey in metropolitan Atlanta during April and May 2020 and found these 2 estimates to be similar (4.94% vs 3.18%). Compared with more representative surveys, commercial sera can provide an approximate measure of seroprevalence.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Laboratories , Seroepidemiologic Studies , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL