Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Sustainability ; 15(11):8748, 2023.
Article in English | ProQuest Central | ID: covidwho-20238828


The number of inbound tourists in Japan has been increasing steadily in recent years. However, due to the COVID-19 pandemic, the number of inbound tourists decreased in 2020. This is particularly worrisome for Japan, as the number of inbound tourists is expected to reach 60 million per year by 2030. In order to help Japan's tourism industry to recover from the pandemic, we propose a method of identifying elements that attract the attention of inbound tourists (focus points) by analyzing reviews on tourist sites. We focus on Hokkaido, a popular area in Japan for tourists from China. Our proposed method extracts high-frequency n-gram patterns from reviews written by Chinese inbound tourists, showing which aspects are mentioned most often. We then use seven types of motivational factors for tourists and principal component analysis to quantify the focus points of each tourist destination. Finally, we estimate the focus points by clustering the n-gram patterns extracted from the tourists' reviews. The results show that our method successfully identifies the features and focus points of each tourist spot.

Int J Environ Res Public Health ; 18(22)2021 11 09.
Article in English | MEDLINE | ID: covidwho-1534037


In this paper, we study language used by suicidal users on Reddit social media platform. To do that, we firstly collect a large-scale dataset of Reddit posts and annotate it with highly trained and expert annotators under a rigorous annotation scheme. Next, we perform a multifaceted analysis of the dataset, including: (1) the analysis of user activity before and after posting a suicidal message, and (2) a pragmalinguistic study on the vocabulary used by suicidal users. In the second part of the analysis, we apply LIWC, a dictionary-based toolset widely used in psychology and linguistic research, which provides a wide range of linguistic category annotations on text. However, since raw LIWC scores are not sufficiently reliable, or informative, we propose a procedure to decrease the possibility of unreliable and misleading LIWC scores leading to misleading conclusions by analyzing not each category separately, but in pairs with other categories. The analysis of the results supported the validity of the proposed approach by revealing a number of valuable information on the vocabulary used by suicidal users and helped to pin-point false predictors. For example, we were able to specify that death-related words, typically associated with suicidal posts in the majority of the literature, become false predictors, when they co-occur with apostrophes, even in high-risk subreddits. On the other hand, the category-pair based disambiguation helped to specify that death becomes a predictor only when co-occurring with future-focused language, informal language, discrepancy, or 1st person pronouns. The promising applicability of the approach was additionally analyzed for its limitations, where we found out that although LIWC is a useful and easily applicable tool, the lack of any contextual processing makes it unsuitable for application in psychological and linguistic studies. We conclude that disadvantages of LIWC can be easily overcome by creating a number of high-performance AI-based classifiers trained for annotation of similar categories as LIWC, which we plan to pursue in future work.

Social Media , Suicidal Ideation , Humans , Language , Linguistics