Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Type of study
Document Type
Year range
Axioms ; 12(4):327, 2023.
Article in English | ProQuest Central | ID: covidwho-2304627


Modeling real-life pandemics is very important;this study focuses on introducing a new superior flexible extension of the asymmetric Haq distribution known as the power Haq distribution (PHD). The most fundamental mathematical properties are derived. We determine its parameters using ten estimation methods. The asymptotic behavior of its estimators is investigated through simulation, and a comparison is done to find out the most efficient method for estimating the parameters of the distribution under consideration. We use a sample for the COVID-19 data set to evaluate the proposed model's performance and usefulness in fitting the data set in comparison to other well-known models.

Complexity ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2079089


The extended reduced Kies distribution (ExRKD), which is an asymmetric flexible extension of the reduced Kies distribution, is the subject of this research. Some of its most basic mathematical properties are deduced from its formal definitions. We computed the ExRKD parameters using eight well-known methods. A full simulation analysis was done that allows the study of these estimators’ asymptotic behavior. The efficiency and applicability of the ExRKD are investigated via the modeling of COVID-19 and milk data sets, which demonstrates that the ExRKD delivers a better match to the data sets when compared to competing models.

Complexity ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2064320


Statistical distributions have great applicability for modeling data in almost every applied sector. Among the available classical distributions, the inverse Weibull distribution has received considerable attention. In the practice of distribution theory, numerous methods have been studied and suggested/introduced to increase the flexibility level of the traditional probability distributions. In this paper, we implement different distribution methods to obtain five new different versions of the inverse Weibull model. The new modifications of the inverse Weibull model are called the logarithm transformed-inverse Weibull, a flexible reduced logarithmic-inverse Weibull, the weighted TX-inverse Weibull, a new generalized-inverse Weibull, and the alpha power transformed extended-inverse Weibull distributions. To illustrate the flexibility and applicability of the new modifications of the inverse Weibull model, a biomedical data set is analyzed. The data set consists of 108 observations and represents the mortality rate of the COVID-19-infected patients. The practical application shows that the new generalized-inverse Weibull is the best modification of the inverse Weibull distribution.