Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Infect ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1914623

ABSTRACT

BACKGROUND: Procalcitonin (PCT) and C-Reactive Protein (CRP) are useful biomarkers to differentiate bacterial from viral or fungal infections, although the association between them and co-infection or mortality in COVID-19 remains unclear. METHODS: The study represents a retrospective cohort study of patients admitted for COVID-19 pneumonia to 84 ICUs from ten countries between (March 2020-January 2021). Primary outcome was to determine whether PCT or CRP at admission could predict community-acquired bacterial respiratory co-infection (BC) and its added clinical value by determining the best discriminating cut-off values. Secondary outcome was to investigate its association with mortality. To evaluate the main outcome, a binary logistic regression was performed. The area under the curve evaluated diagnostic performance for BC prediction. RESULTS: 4635 patients were included, 7.6% fulfilled BC diagnosis. PCT (0.25[IQR 0.1-0.7] versus 0.20[IQR 0.1-0.5]ng/mL, p<0.001) and CRP (14.8[IQR 8.2-23.8] versus 13.3 [7-21.7]mg/dL, p=0.01) were higher in BC group. Neither PCT nor CRP were independently associated with BC and both had a poor ability to predict BC (AUC for PCT 0.56, for CRP 0.54). Baseline values of PCT<0.3ng/mL, could be helpful to rule out BC (negative predictive value 91.1%) and PCT≥0.50ng/mL was associated with ICU mortality (OR 1.5,p<0.001). CONCLUSIONS: These biomarkers at ICU admission led to a poor ability to predict BC among patients with COVID-19 pneumonia. Baseline values of PCT<0.3ng/mL may be useful to rule out BC, providing clinicians a valuable tool to guide antibiotic stewardship and allowing the unjustified overuse of antibiotics observed during the pandemic, additionally PCT≥0.50ng/mL might predict worsening outcomes.

2.
Intensive Care Med ; 48(7): 850-864, 2022 07.
Article in English | MEDLINE | ID: covidwho-1899125

ABSTRACT

PURPOSE: Although there is evidence supporting the benefits of corticosteroids in patients affected with severe coronavirus disease 2019 (COVID-19), there is little information related to their potential benefits or harm in some subgroups of patients admitted to the intensive care unit (ICU) with COVID-19. We aim to investigate to find candidate variables to guide personalized treatment with steroids in critically ill patients with COVID-19. METHODS: Multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish ICUs. The primary outcome was 90-day mortality. Subsequent analyses in clinically relevant subgroups by age, ICU baseline illness severity, organ damage, laboratory findings and mechanical ventilation were performed. High doses of corticosteroids (≥ 12 mg/day equivalent dexamethasone dose), early administration of corticosteroid treatment (< 7 days since symptom onset) and long term of corticosteroids (≥ 10 days) were also investigated. RESULTS: Between February 2020 and October 2021, 4226 patients were included. Of these, 3592 (85%) patients had received systemic corticosteroids during hospitalisation. In the propensity-adjusted multivariable analysis, the use of corticosteroids was protective for 90-day mortality in the overall population (HR 0.77 [0.65-0.92], p = 0.003) and in-hospital mortality (SHR 0.70 [0.58-0.84], p < 0.001). Significant effect modification was found after adjustment for covariates using propensity score for age (p = 0.001 interaction term), Sequential Organ Failure Assessment (SOFA) score (p = 0.014 interaction term), and mechanical ventilation (p = 0.001 interaction term). We observed a beneficial effect of corticosteroids on 90-day mortality in various patient subgroups, including those patients aged ≥ 60 years; those with higher baseline severity; and those receiving invasive mechanical ventilation at ICU admission. Early administration was associated with a higher risk of 90-day mortality in the overall population (HR 1.32 [1.14-1.53], p < 0.001). Long-term use was associated with a lower risk of 90-day mortality in the overall population (HR 0.71 [0.61-0.82], p < 0.001). No effect was found regarding the dosage of corticosteroids. Moreover, the use of corticosteroids was associated with an increased risk of nosocomial bacterial pneumonia and hyperglycaemia. CONCLUSION: Corticosteroid in ICU-admitted patients with COVID-19 may be administered based on age, severity, baseline inflammation, and invasive mechanical ventilation. Early administration since symptom onset may prove harmful.


Subject(s)
COVID-19 , Adrenal Cortex Hormones/therapeutic use , COVID-19/drug therapy , Critical Illness/therapy , Humans , Intensive Care Units , Precision Medicine , Respiration, Artificial , Steroids/therapeutic use
3.
Archivos de bronconeumologia ; 2022.
Article in English | EuropePMC | ID: covidwho-1801724

ABSTRACT

Introduction The COVID-19 pandemic created tremendous challenges for health-care systems. Intensive care units (ICU) were hit with a large volume of patients requiring ICU admission, mechanical ventilation, and other organ support with very high mortality. The Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES), a network of Spanish researchers to investigate in respiratory disease, commissioned the current proposal in response to the Instituto de Salud Carlos III (ISCIII) call. Methods CIBERESUCICOVID is a multicenter, observational, prospective/retrospective cohort study of patients with COVID-19 admitted to Spanish ICUs. Several work packages were created, including study population and ICU data collection, follow-up, biomarkers and miRNAs, data management and quality. Results This study included 6102 consecutive patients admitted to 55 ICUs homogeneously distributed throughout Spain and the collection of blood samples from more than 1000 patients. We enrolled a large population of COVID-19 ICU-admitted patients including baseline characteristics, ICU and MV data, treatments complications, and outcomes. The in-hospital mortality was 31%, and 76% of patients required invasive mechanical ventilation. A 3-6 month and 1 year follow-up was performed. Few deaths after 1 year discharge were registered. Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. These antibodies contribute to prevent systemic dissemination of SARS-CoV-2. The severity of COVID-19 impacts the circulating miRNA profile. Plasma miRNA profiling emerges as a useful tool for risk-based patient stratification in critically ill COVID-19 patients. Conclusions We present the methodology used in a large multicenter study sponsored by ISCIII to determine the short- and long-term outcomes in patients with COVID-19 admitted to more than 50 Spanish ICUs.

4.
Arch Bronconeumol ; 58 Suppl 1: 22-31, 2022 Apr.
Article in English, Spanish | MEDLINE | ID: covidwho-1797167

ABSTRACT

INTRODUCTION: The COVID-19 pandemic created tremendous challenges for health-care systems. Intensive care units (ICU) were hit with a large volume of patients requiring ICU admission, mechanical ventilation, and other organ support with very high mortality. The Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES), a network of Spanish researchers to investigate in respiratory disease, commissioned the current proposal in response to the Instituto de Salud Carlos III (ISCIII) call. METHODS: CIBERESUCICOVID is a multicenter, observational, prospective/retrospective cohort study of patients with COVID-19 admitted to Spanish ICUs. Several work packages were created, including study population and ICU data collection, follow-up, biomarkers and miRNAs, data management and quality. RESULTS: This study included 6102 consecutive patients admitted to 55 ICUs homogeneously distributed throughout Spain and the collection of blood samples from more than 1000 patients. We enrolled a large population of COVID-19 ICU-admitted patients including baseline characteristics, ICU and MV data, treatments complications, and outcomes. The in-hospital mortality was 31%, and 76% of patients required invasive mechanical ventilation. A 3-6 month and 1 year follow-up was performed. Few deaths after 1 year discharge were registered. Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. These antibodies contribute to prevent systemic dissemination of SARS-CoV-2. The severity of COVID-19 impacts the circulating miRNA profile. Plasma miRNA profiling emerges as a useful tool for risk-based patient stratification in critically ill COVID-19 patients. CONCLUSIONS: We present the methodology used in a large multicenter study sponsored by ISCIII to determine the short- and long-term outcomes in patients with COVID-19 admitted to more than 50 Spanish ICUs.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/epidemiology , Critical Illness/therapy , Humans , Intensive Care Units , Pandemics , Prospective Studies , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
5.
J Crit Care ; 69: 154014, 2022 06.
Article in English | MEDLINE | ID: covidwho-1701879

ABSTRACT

PURPOSE: Dexamethasone is the only drug that has consistently reduced mortality in patients with COVID-19, especially in patients needing oxygen or invasive mechanical ventilation. However, there is a growing concern about the relation of dexamethasone with the unprecedented rates of ICU-acquired respiratory tract infections (ICU-RTI) observed in patients with severe COVID-19. METHODS: This was a multicenter, prospective cohort study; conducted in ten countries in Latin America and Europe. We included patients older than 18 with confirmed SARS-CoV-2 requiring ICU admission. A multivariate logistic regression and propensity score matching (PSM) analysis was conducted to determine the relation between dexamethasone treatment and ICU-RTI. RESULTS: A total of 3777 patients were included. 2065 (54.7%) were treated with dexamethasone within the first 24 h of admission. After performing the PSM, patients treated with dexamethasone showed significantly higher proportions of VAP (282/1652 [17.1%] Vs. 218/1652 [13.2%], p = 0.014). Also, dexamethasone treatment was identified as an adjusted risk factor of ICU-RTI in the multivariate logistic regression model (OR 1.64; 95%CI: 1.37-1.97; p < 0.001). CONCLUSION: Patients treated with dexamethasone for severe COVID-19 had a higher risk of developing ICU-acquired respiratory tract infections after adjusting for days of invasive mechanical ventilation and ICU length of stay, suggesting a cautious use of this treatment.


Subject(s)
COVID-19 , COVID-19/drug therapy , Dexamethasone/adverse effects , Humans , Intensive Care Units , Prospective Studies , Risk Factors , SARS-CoV-2
6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320148

ABSTRACT

Background: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Methods: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 Intensive Care Units(ICU) in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. Results: : The database included a total of 2,022 patients (mean age 64[IQR5-71] years, 1423(70.4%) male, median APACHE II score (13[IQR10-17]) and SOFA score (5[IQR3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A(mild) phenotype (537;26.7%) included older age (<65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623,30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C(severe) phenotype was the most common (857;42.5%) and was characterized by the interplay of older age (>65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. Conclusion: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice .

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317390

ABSTRACT

Background: The steroids are currently used as standard treatment for severe COVID-19. However, the evidence is weak. Our aim is to determine if the use of corticosteroids was associated with Intensive Care Unit (ICU) mortality among whole population and pre-specified clinical phenotypes. Methods: A secondary analysis derived from multicenter, observational study of adult critically ill patients with confirmed COVID-19 disease admitted to 63 ICUs in Spain. Three phenotypes were derived by non-supervised clustering analysis from whole population and classified as (A: severe, B: critical and C: life-threatening). The primary outcome was ICU mortality. We performed a Multivariate analysis after propensity score full matching (PS), Cox proportional hazards (CPH), Cox covariate time interaction (TIR), Weighted Cox Regression (WCR) and Fine-Gray analysis(sHR) to assess the impact of corticosteroids on ICU mortality according to the whole population and distinctive patient clinical phenotypes. Results: : A total of 2,017 patients were analyzed, 1171(58%) with corticosteroids. After PS, corticosteroids were shown not to be associated with ICU mortality (OR:1.0,95%CI:0.98-1.15). Corticosteroids were administered in 298/537(55.5%) patients of “A” phenotype and their use was not associated with ICU mortality (HR=0.85[0.55-1.33]). A total of 338/623(54.2%) patients in “B” phenotype received corticosteroids. The CPH (HR =0.65 [0.46-0.91]) and TIR regression (1- 25 day tHR=0.56[0.39-0.82] and >25 days tHR=1.53[1.03-7.12]) showed a biphasic effect of corticosteroids due to proportional assumption violation. No effect of corticosteroids on ICU mortality was observed when WCR was performed (wHR=0.72[0.49-1.05]). Finally, 535/857(62.4%) patients in “C” phenotype received corticosteroids. The CPH (HR=0.73[0.63-0.98]) and TIR regression (1- 25 day tHR=0.69[ 0.53-0.89] and >25 days tHR=1.30[ 1.14-3.25]) showed a biphasic effect of corticosteroids and proportional assumption violation. However, wHR (0.75[0.58-0.98]) and sHR (0.79[0.63-0.98]) suggest a protective effect of corticosteroids on ICU mortality. Conclusion: Our finding warns against the widespread use of corticosteroids in all critically ill patients with COVID-19 at moderate-high dose. Only patients with the highest severity could benefit from steroid treatment although this effect on clinical outcome was minimized during ICU stay.

9.
Ann Intensive Care ; 11(1): 159, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1538089

ABSTRACT

BACKGROUND: Some unanswered questions persist regarding the effectiveness of corticosteroids for severe coronavirus disease 2019 (COVID-19) patients. We aimed to assess the clinical effect of corticosteroids on intensive care unit (ICU) mortality among mechanically ventilated COVID-19-associated acute respiratory distress syndrome (ARDS) patients. METHODS: This was a retrospective study of prospectively collected data conducted in 70 ICUs (68 Spanish, one Andorran, one Irish), including mechanically ventilated COVID-19-associated ARDS patients admitted between February 6 and September 20, 2020. Individuals who received corticosteroids for refractory shock were excluded. Patients exposed to corticosteroids at admission were matched with patients without corticosteroids through propensity score matching. Primary outcome was all-cause ICU mortality. Secondary outcomes were to compare in-hospital mortality, ventilator-free days at 28 days, respiratory superinfection and length of stay between patients with corticosteroids and those without corticosteroids. We performed survival analysis accounting for competing risks and subgroup sensitivity analysis. RESULTS: We included 1835 mechanically ventilated COVID-19-associated ARDS, of whom 1117 (60.9%) received corticosteroids. After propensity score matching, ICU mortality did not differ between patients treated with corticosteroids and untreated patients (33.8% vs. 30.9%; p = 0.28). In survival analysis, corticosteroid treatment at ICU admission was associated with short-term survival benefit (HR 0.53; 95% CI 0.39-0.72), although beyond the 17th day of admission, this effect switched and there was an increased ICU mortality (long-term HR 1.68; 95% CI 1.16-2.45). The sensitivity analysis reinforced the results. Subgroups of age < 60 years, severe ARDS and corticosteroids plus tocilizumab could have greatest benefit from corticosteroids as short-term decreased ICU mortality without long-term negative effects were observed. Larger length of stay was observed with corticosteroids among non-survivors both in the ICU and in hospital. There were no significant differences for the remaining secondary outcomes. CONCLUSIONS: Our results suggest that corticosteroid treatment for mechanically ventilated COVID-19-associated ARDS had a biphasic time-dependent effect on ICU mortality. Specific subgroups showed clear effect on improving survival with corticosteroid use. Therefore, further research is required to identify treatment-responsive subgroups among the mechanically ventilated COVID-19-associated ARDS patients.

10.
Lancet Reg Health Eur ; 11: 100243, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1500123

ABSTRACT

BACKGROUND: It is unclear whether the changes in critical care throughout the pandemic have improved the outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the intensive care units (ICUs). METHODS: We conducted a retrospective cohort study in adults with COVID-19 pneumonia admitted to 73 ICUs from Spain, Andorra and Ireland between February 2020 and March 2021. The first wave corresponded with the period from February 2020 to June 2020, whereas the second/third waves occurred from July 2020 to March 2021. The primary outcome was ICU mortality between study periods. Mortality predictors and differences in mortality between COVID-19 waves were identified using logistic regression. FINDINGS: As of March 2021, the participating ICUs had included 3795 COVID-19 pneumonia patients, 2479 (65·3%) and 1316 (34·7%) belonging to the first and second/third waves, respectively. Illness severity scores predicting mortality were lower in the second/third waves compared with the first wave according with the Acute Physiology and Chronic Health Evaluation system (median APACHE II score 12 [IQR 9-16] vs 14 [IQR 10-19]) and the organ failure assessment score (median SOFA 4 [3-6] vs 5 [3-7], p<0·001). The need of invasive mechanical ventilation was high (76·1%) during the whole study period. However, a significant increase in the use of high flow nasal cannula (48·7% vs 18·2%, p<0·001) was found in the second/third waves compared with the first surge. Significant changes on treatments prescribed were also observed, highlighting the remarkable increase on the use of corticosteroids to up to 95.9% in the second/third waves. A significant reduction on the use of tocilizumab was found during the study (first wave 28·9% vs second/third waves 6·2%, p<0·001), and a negligible administration of lopinavir/ritonavir, hydroxychloroquine, and interferon during the second/third waves compared with the first wave. Overall ICU mortality was 30·7% (n = 1166), without significant differences between study periods (first wave 31·7% vs second/third waves 28·8%, p = 0·06). No significant differences were found in ICU mortality between waves according to age subsets except for the subgroup of 61-75 years of age, in whom a reduced unadjusted ICU mortality was observed in the second/third waves (first 38·7% vs second/third 34·0%, p = 0·048). Non-survivors were older, with higher severity of the disease, had more comorbidities, and developed more complications. After adjusting for confounding factors through a multivariable analysis, no significant association was found between the COVID-19 waves and mortality (OR 0·81, 95% CI 0·64-1·03; p = 0·09). Ventilator-associated pneumonia rate increased significantly during the second/third waves and it was independently associated with ICU mortality (OR 1·48, 95% CI 1·19-1·85, p<0·001). Nevertheless, a significant reduction both in the ICU and hospital length of stay in survivors was observed during the second/third waves. INTERPRETATION: Despite substantial changes on supportive care and management, we did not find significant improvement on case-fatality rates among critical COVID-19 pneumonia patients. FUNDING: Ricardo Barri Casanovas Foundation (RBCF2020) and SEMICYUC.

11.
J Pers Med ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1497280

ABSTRACT

Background: The aim of this study was to analyze the percentage of patients admitted to the ICU having received the vaccine against COVID-19, to describe the clinical profile of vaccinated patients admitted to the ICU, and to assess the humoral immune response to vaccination. Methods: In this multicenter prospective descriptive cohort study, consecutive critically ill patients with confirmed SARS-CoV-2 pneumonia who received at least one dose of the SARS-CoV-2 vaccine were included. The time of study was from 1 July to 10 August of 2021. Results: Of the 94 consecutive patients from seven Andalusian ICUs admitted during the time of study, 50 (53.2%) received at least one dose of anti SARS-CoV-2 vaccine. No patient was admitted having previously had SARS-CoV-2 infection. The B.1.617.2 (Delta) variant was the most frequently identified, in 80.76% of cases. Patients with a complete vaccination with non-optimal antibody levels were immunocompromised. Fifteen patients were admitted to the ICU with Acute Respiratory Distress Syndrome (ARDS) without having completed their vaccination; the clinical profile was younger and with less comorbidities compared to patients with full vaccination. There were no differences in severity of ARDS. Conclusions: Most of the patients who were admitted to the ICU having received a dose of the vaccine were not optimally vaccinated; fully vaccinated patients who did not obtain optimal serum antibody levels were patients considered immunocompromised.

12.
Med Intensiva ; 2021 Oct 26.
Article in Spanish | MEDLINE | ID: covidwho-1482804

ABSTRACT

OBJECTIVE: To determine if the use of corticosteroids was associated with Intensive Care Unit (ICU) mortality among whole population and pre-specified clinical phenotypes. DESIGN: A secondary analysis derived from multicenter, observational studySetting: Critical Care UnitsPatients: Adult critically ill patients with confirmed COVID-19 disease admitted to 63 ICUs in Spain. INTERVENTIONS: corticosteroids vs no corticosteroidsMain variables of interest: Three phenotypes were derived by non-supervised clustering analysis from whole population and classified as (A: severe, B: critical and C: life-threatening). We performed a Multivariate analysis after propensity optimal full matching (PS) for whole population and weighted Cox regression (HR) and Fine-Gray analysis(sHR) to assess the impact of corticosteroids on ICU mortality according to the whole population and distinctive patient clinical phenotypes. RESULTS: A total of 2,017 patients were analyzed, 1171(58%) with corticosteroids. After PS, corticosteroids were shown not to be associated with ICU mortality (OR:1.0,95%CI:0.98-1.15). Corticosteroids were administered in 298/537(55.5%) patients of "A" phenotype and their use was not associated with ICU mortality (HR=0.85[0.55-1.33]). A total of 338/623(54.2%) patients in "B" phenotype received corticosteroids. No effect of corticosteroids on ICU mortality was observed when HR was performed (0.72[0.49-1.05]). Finally, 535/857(62.4%) patients in "C" phenotype received corticosteroids. In this phenotype HR (0.75[0.58-0.98]) and sHR (0.79[0.63-0.98]) suggest a protective effect of corticosteroids on ICU mortality. CONCLUSION: Our finding warns against the widespread use of corticosteroids in all critically ill patients with COVID-19 at moderate dose. Only patients with the highest inflammatory levels could benefit from steroid treatment.

13.
Crit Care ; 25(1): 331, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1413915

ABSTRACT

BACKGROUND: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. METHODS: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. RESULTS: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). CONCLUSIONS: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation.


Subject(s)
COVID-19/therapy , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Ventilation-Perfusion Ratio/physiology , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/physiopathology , Cohort Studies , Critical Care/methods , Critical Care/trends , Female , Hospital Mortality/trends , Humans , Intensive Care Units/trends , Male , Middle Aged , Prognosis , Prospective Studies , Pulmonary Ventilation/physiology , Respiration, Artificial/trends , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/physiopathology , Retrospective Studies , Spain/epidemiology
14.
Crit Care ; 25(1): 63, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1085162

ABSTRACT

BACKGROUND: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. METHODS: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. RESULTS: The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. CONCLUSION: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Aged , Cluster Analysis , Critical Illness , Female , Humans , Male , Middle Aged , Phenotype , Risk Assessment , Risk Factors , Spain/epidemiology
16.
J Clin Ethics ; 31(2): 191-193, 2020.
Article in English | MEDLINE | ID: covidwho-616019

ABSTRACT

Public health strategies recommend isolating patients with SARS-CoV-2 infection. But compassionate care in the intensive care unit (ICU) is an ethical obligation of modern medicine that cannot be justified by the risk of infection or the lack of personal protective equipment. This article describes the experiences of clinicians in ICUs in the south of Spain promoted by the Andalusian Society of Intensive Care SAMIUC, in the hope it will serve to improve the conditions in which these patients die, and to help their families who suffer when they cannot say good-bye to their loved ones. In the south of Spain, healthcare professionals use daily videoconferencing to improve communication between clinicians, patients, and their relatives who cannot visit them in the ICU. This close communication allows families to see their loved ones and extends communication between healthcare professionals, patients, and their relatives. To allow family members to accompany patients at the end of life, it is possible to adapt public health rules to the epidemic situation.


Subject(s)
Coronavirus Infections/therapy , Critical Illness , Pneumonia, Viral/therapy , Terminal Care/ethics , Betacoronavirus , COVID-19 , Communication , Empathy , Family , Humans , Intensive Care Units/organization & administration , Pandemics/ethics , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL