Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Preprint in English | medRxiv | ID: ppmedrxiv-21265693


To evaluate vaccine-induced humoral and cell-mediated immunity at 6 months post BNT162b2 vaccination, immunoglobulin G against SARS-CoV-2 spike protein (SP IgG), 50% neutralizing antibody (NT50), and spot-forming cell (SFC) counts were evaluated by interferon-{gamma} releasing ELISpot assay of 98 healthy subjects (median age, 43 years). The geometric mean titers of SP IgG and NT50 decreased from 95.2 (95% confidence interval (CI) 79.8-113.4) to 5.7 (95% CI 4.9-6.7) and from 680.4 (588.0-787.2) to 130.4 (95% CI 104.2-163.1), respectively, at 3 weeks and 6 months after the vaccination. SP IgG titer was negatively correlated with age and alcohol consumption. Spot-forming cell counts at 6 months did not correlate with age, gender, and other parameters of the patients. SP IgG, NT50, and SFC titers were elevated in the breakthrough infected subjects. Although the levels of vaccine-induced antibodies dramatically declined at 6 months after vaccination, a certain degree of cellular immunity was observed irrespective of the age.

Preprint in English | medRxiv | ID: ppmedrxiv-21250659


Rapid diagnosis of COVID-19 is essential for instituting measures to prevent viral spread. SARS-CoV-2 antigen rapid diagnostic test (Ag-RDT) based on lateral flow immunochromatography assay (LFIA) principle can visually indicate the presence of SARS-CoV-2 antigens as a band. Ag-RDT is clinically promising as a point-of-care testing because it can give results in a short time without the need for special equipment. Although various antigen capture LFIAs are now available for rapid diagnosis for SARS-CoV-2 infection, they face the problems of low sensitivity. We have previously developed highly specific monoclonal antibodies (mAb) against SARS-CoV-2 nucleocapsid protein (NP) and in this study, we have employed these mAbs to develop a new LFIA that can detect SARS-CoV-2 NP in nasopharyngeal swab samples with higher sensitivity by combining them with silver amplification technology. We also compared the performance of our Ag-RDT against the commercially available Ag-RDTs using clinical samples to find that our newly developed LFIA performed best among tested, highlighting the superiority of silver amplification technology.

Preprint in English | medRxiv | ID: ppmedrxiv-20225805


ObjectiveSerological tests for COVID-19 have been instrumental in studying the epidemiology of the disease. However, the performance of the currently available tests is plagued by the problem of variability. We have developed a high-throughput serological test capable of simultaneously detecting total immunoglobulins (Ig) and immunoglobulin G (IgG) against two of the most immunologically relevant SARS-CoV-2 antigens, nucleocapsid protein (NP) and spike protein (SP) and report its performance in detecting COVID-19 in clinical samples. MethodsWe designed and prepared reagents for measuring NP-IgG, NP-Total Ig, SP-IgG, and SP-Total Ig (using N-terminally truncated NP ({Delta}N-NP) or receptor-binding domain (RBD) antigen) on the advanced chemiluminescence enzyme immunoassay system TOSOH AIA-CL. After determining the basal thresholds based on 17 sera obtained from confirmed COVID-19 patients and 600 negative sera. Subsequently, the clinical validity of the assay was evaluated using independent 202 positive samples and 1,000 negative samples from healthy donors. ResultsAll of the four test parameters showed 100% specificity individually (1,000/1,000; 95%CI, 99.63-100). The sensitivity of the assay increased proportionally to the elapsed time from symptoms onset, and all the tests achieved 100% sensitivity (153/153; 95%CI, 97.63-100) after 13 days from symptoms onset. NP-Total Ig was the earliest to attain maximal sensitivity among the other antibodies tested. ConclusionOur newly developed serological testing exhibited 100% sensitivity and specificity after 13 days from symptoms onset. Hence, it could be used as a reliable method for accurate detection of COVID-19 patients and to evaluate seroprevalence and possibly for surrogate assessment of herd immunity.