Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Preprint in English | medRxiv | ID: ppmedrxiv-21268481


BackgroundThe immune profile against SARS-CoV-2 has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by the Omicron in individuals with various immune histories. MethodsThe neutralization susceptibility of the variants including the Omicron and their ancestor was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections by the Alpha/Delta with multiple time intervals following vaccination. FindingsThe Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against the Omicron were induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. ConclusionsImmune histories with breakthrough infections can overcome the resistance to infection by the Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against the Omicron and future variants. FundingThis study was supported by grants from the Japan Agency for Medical Research and Development (AMED).

J Vet Med Sci ; 83(11): 1722-1725, 2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1518345


We investigated the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among dogs in the Tokyo area via enzyme-linked immunosorbent assay (ELISA) using the spike protein as the target antigen. Plasma samples from 494 household dogs and blood-donor dogs were tested from July 2020 to January 2021. Of these samples, three showed optical densities that were higher than the mean plus two standard deviations of the mean of the negative-control optical densities (ODs). Of these three samples, only the sample with the highest OD by ELISA was confirmed positive by virus neutralization testing. The positive dog presented no SARS-CoV-2-related symptoms. The positivity rate of SARS-CoV-2 infections among dogs in the Tokyo area was approximately 0.2%.

COVID-19 , Dog Diseases , Animals , Antibodies, Viral , COVID-19/veterinary , Dog Diseases/epidemiology , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Japan/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
Preprint in English | bioRxiv | ID: ppbiorxiv-445769


SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure. Author SummarySARS-CoV-2 infection presents a wide spectrum of clinical manifestations ranging from asymptomatic to fatal respiratory failure. The determinants for failure in viral control and/or fatal disease progression have not been elucidated fully. Both acquired immune effectors, antibodies and CD8+ T cells, are considered to contribute to viral control. However, it remains unknown whether a deficiency in either of these two arms is directly linked to failure in the control of SARS-CoV-2 replication. In the present study, to know the requirement of CD8+ T cells for viral control after the establishment of infection, we examined the effect of CD8+ cell depletion by monoclonal anti-CD8 antibody administration in the subacute phase on SARS-CoV-2 replication in cynomolgus macaques. Unexpectedly, our analysis revealed no significant impact of CD8+ cell depletion on viral replication, indicating that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but this study suggests that CD8+ T-cell dysfunction may not solely lead to viral control failure or fatal disease progression.