Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-481609

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organisation (WHO) as Alpha. Originating in early Autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is more typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK, and the imposition of new restrictions, in particular the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages which preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically-infected individual. We conclude that the last hypothesis provides the best explanation of the observed behaviour and dynamics of the variant, although we find that the individual need not be immunocompromised, as persistently-infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs to each other, and identify that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations, and its lack of rapid evolutionary rate on the ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms) it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-424229

ABSTRACT

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1,181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within and between host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20182279

ABSTRACT

COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1,167 residents from 337 care homes were identified from a dataset of 6,600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population. Impact statementSARS-CoV-2 can spread efficiently within care homes causing COVID-19 outbreaks among residents, who are at increased risk of severe disease, emphasising the importance of stringent infection control in this population.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20152967

ABSTRACT

RationaleThe impact of COVID-19 on patients with Interstitial Lung Disease (ILD) has not been established. ObjectivesTo assess outcomes following COVID-19 in patients with ILD versus those without in a contemporaneous age, sex and comorbidity matched population. MethodsAn international multicentre audit of patients with a prior diagnosis of ILD admitted to hospital with COVID-19 between 1 March and 1 May 2020 was undertaken and compared with patients, without ILD obtained from the ISARIC 4C cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished IPF from non-IPF ILD and used lung function to determine the greatest risks of death. Measurements and Main ResultsData from 349 patients with ILD across Europe were included, of whom 161 were admitted to hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity-score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching ILD patients with COVID-19 had higher mortality (HR 1.60, Confidence Intervals 1.17-2.18 p=0.003) compared with age, sex and comorbidity matched controls without ILD. Patients with a Forced Vital Capacity (FVC) of <80% had an increased risk of death versus patients with FVC [≥]80% (HR 1.72, 1.05-2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR 1.98, 1.13-3.46). ConclusionsPatients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD.

SELECTION OF CITATIONS
SEARCH DETAIL