Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313759

ABSTRACT

Background: : The incidence of opioid-related overdose deaths has been rising for 30 years and has been further exacerbated amidst the COVID-19 pandemic. Naloxone can reverse opioid overdose, lower death rates, and enable a transition to medication for opioid use disorder. Though current formulations for community use of naloxone have been shown to be safe and effective public health interventions, they rely on bystander presence. We sought to understand the preferences and minimum necessary conditions for wearing a device capable of sensing and reversing opioid overdose among people who regularly use opioids. Methods: : We conducted a combined cross-sectional survey and semi-structured interview at a respite center, shelter, and syringe exchange drop-in program in Philadelphia, Pennsylvania, USA during the COVID-19 pandemic in August and September 2020. The primary aim was to explore the proportion of participants who would use a wearable device to detect and reverse overdose. Preferences regarding designs and functionalities were collected via a questionnaire with items having Likert-based response options and a semi-structured interview intended to elicit feedback on prototype designs. Independent variables included demographics, opioid use habits, and previous experience with overdose. Results: : A total of 97 adults with an opioid-use history of at least 3 months were interviewed. A majority of survey participants (76%) reported a willingness to use a device capable of detecting an overdose and automatically administering a reversal agent upon initial survey. When reflecting on the prototype, most respondents (75.5%) reported that they would wear the device always or most of the time. Respondents indicated discreetness and comfort as important factors that increased their chance of uptake. Respondents suggested that people experiencing homelessness and those with low tolerance for opioids would be in greatest need of the device. Conclusions: : The majority of people sampled with a history of opioid use in an urban setting were interested in having access to a device capable of detecting and reversing an opioid overdose. Participants emphasized privacy and comfort as the most important factors influencing their willingness to use such a device. Trial Registration : NCT04530591

2.
NPJ Digit Med ; 5(1): 5, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625359

ABSTRACT

While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19 pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital's image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and demonstrates the value of an end-to-end COVID-19 triage platform.

3.
Harm Reduct J ; 18(1): 75, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1322939

ABSTRACT

BACKGROUND: The incidence of opioid-related overdose deaths has been rising for 30 years and has been further exacerbated amidst the COVID-19 pandemic. Naloxone can reverse opioid overdose, lower death rates, and enable a transition to medication for opioid use disorder. Though current formulations for community use of naloxone have been shown to be safe and effective public health interventions, they rely on bystander presence. We sought to understand the preferences and minimum necessary conditions for wearing a device capable of sensing and reversing opioid overdose among people who regularly use opioids. METHODS: We conducted a combined cross-sectional survey and semi-structured interview at a respite center, shelter, and syringe exchange drop-in program in Philadelphia, Pennsylvania, USA, during the COVID-19 pandemic in August and September 2020. The primary aim was to explore the proportion of participants who would use a wearable device to detect and reverse overdose. Preferences regarding designs and functionalities were collected via a questionnaire with items having Likert-based response options and a semi-structured interview intended to elicit feedback on prototype designs. Independent variables included demographics, opioid use habits, and previous experience with overdose. RESULTS: A total of 97 adults with an opioid use history of at least 3 months were interviewed. A majority of survey participants (76%) reported a willingness to use a device capable of detecting an overdose and automatically administering a reversal agent upon initial survey. When reflecting on the prototype, most respondents (75.5%) reported that they would wear the device always or most of the time. Respondents indicated discreetness and comfort as important factors that increased their chance of uptake. Respondents suggested that people experiencing homelessness and those with low tolerance for opioids would be in greatest need of the device. CONCLUSIONS: The majority of people sampled with a history of opioid use in an urban setting were interested in having access to a device capable of detecting and reversing an opioid overdose. Participants emphasized privacy and comfort as the most important factors influencing their willingness to use such a device. TRIAL REGISTRATION: NCT04530591.


Subject(s)
Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Opiate Overdose/diagnosis , Opiate Overdose/drug therapy , Patient Acceptance of Health Care/statistics & numerical data , Wearable Electronic Devices/statistics & numerical data , Adolescent , Adult , Child , Cross-Sectional Studies , Female , Humans , Interviews as Topic , Male , Naloxone/therapeutic use , Narcotic Antagonists/therapeutic use , Opiate Overdose/psychology , Patient Acceptance of Health Care/psychology , Philadelphia , Wearable Electronic Devices/psychology , Young Adult
4.
Lancet Digit Health ; 3(5): e286-e294, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152741

ABSTRACT

BACKGROUND: Chest x-ray is a relatively accessible, inexpensive, fast imaging modality that might be valuable in the prognostication of patients with COVID-19. We aimed to develop and evaluate an artificial intelligence system using chest x-rays and clinical data to predict disease severity and progression in patients with COVID-19. METHODS: We did a retrospective study in multiple hospitals in the University of Pennsylvania Health System in Philadelphia, PA, USA, and Brown University affiliated hospitals in Providence, RI, USA. Patients who presented to a hospital in the University of Pennsylvania Health System via the emergency department, with a diagnosis of COVID-19 confirmed by RT-PCR and with an available chest x-ray from their initial presentation or admission, were retrospectively identified and randomly divided into training, validation, and test sets (7:1:2). Using the chest x-rays as input to an EfficientNet deep neural network and clinical data, models were trained to predict the binary outcome of disease severity (ie, critical or non-critical). The deep-learning features extracted from the model and clinical data were used to build time-to-event models to predict the risk of disease progression. The models were externally tested on patients who presented to an independent multicentre institution, Brown University affiliated hospitals, and compared with severity scores provided by radiologists. FINDINGS: 1834 patients who presented via the University of Pennsylvania Health System between March 9 and July 20, 2020, were identified and assigned to the model training (n=1285), validation (n=183), or testing (n=366) sets. 475 patients who presented via the Brown University affiliated hospitals between March 1 and July 18, 2020, were identified for external testing of the models. When chest x-rays were added to clinical data for severity prediction, area under the receiver operating characteristic curve (ROC-AUC) increased from 0·821 (95% CI 0·796-0·828) to 0·846 (0·815-0·852; p<0·0001) on internal testing and 0·731 (0·712-0·738) to 0·792 (0·780-0 ·803; p<0·0001) on external testing. When deep-learning features were added to clinical data for progression prediction, the concordance index (C-index) increased from 0·769 (0·755-0·786) to 0·805 (0·800-0·820; p<0·0001) on internal testing and 0·707 (0·695-0·729) to 0·752 (0·739-0·764; p<0·0001) on external testing. The image and clinical data combined model had significantly better prognostic performance than combined severity scores and clinical data on internal testing (C-index 0·805 vs 0·781; p=0·0002) and external testing (C-index 0·752 vs 0·715; p<0·0001). INTERPRETATION: In patients with COVID-19, artificial intelligence based on chest x-rays had better prognostic performance than clinical data or radiologist-derived severity scores. Using artificial intelligence, chest x-rays can augment clinical data in predicting the risk of progression to critical illness in patients with COVID-19. FUNDING: Brown University, Amazon Web Services Diagnostic Development Initiative, Radiological Society of North America, National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.


Subject(s)
Artificial Intelligence , COVID-19/physiopathology , Prognosis , Radiography, Thoracic , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed , United States , Young Adult
5.
Transpl Int ; 34(6): 1019-1031, 2021 06.
Article in English | MEDLINE | ID: covidwho-1140311

ABSTRACT

The increasing global prevalence of SARS-CoV-2 and the resulting COVID-19 disease pandemic pose significant concerns for clinical management of solid organ transplant recipients (SOTR). Wearable devices that can measure physiologic changes in biometrics including heart rate, heart rate variability, body temperature, respiratory, activity (such as steps taken per day) and sleep patterns, and blood oxygen saturation show utility for the early detection of infection before clinical presentation of symptoms. Recent algorithms developed using preliminary wearable datasets show that SARS-CoV-2 is detectable before clinical symptoms in >80% of adults. Early detection of SARS-CoV-2, influenza, and other pathogens in SOTR, and their household members, could facilitate early interventions such as self-isolation and early clinical management of relevant infection(s). Ongoing studies testing the utility of wearable devices such as smartwatches for early detection of SARS-CoV-2 and other infections in the general population are reviewed here, along with the practical challenges to implementing these processes at scale in pediatric and adult SOTR, and their household members. The resources and logistics, including transplant-specific analyses pipelines to account for confounders such as polypharmacy and comorbidities, required in studies of pediatric and adult SOTR for the robust early detection of SARS-CoV-2, and other infections are also reviewed.


Subject(s)
COVID-19 , Organ Transplantation , Wearable Electronic Devices , Adult , Child , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL