Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718406

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation , Genome, Viral/genetics , Humans , New York City/epidemiology , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
2.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Article in English | MEDLINE | ID: covidwho-1589045

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation , Genome, Viral/genetics , Humans , New York City/epidemiology , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
3.
J Med Virol ; 93(9): 5481-5486, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363685

ABSTRACT

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Diagnostic Tests, Routine/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards , Benchmarking , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Humans , Limit of Detection , Nasopharynx/virology , Specimen Handling/standards , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Nat Commun ; 12(1): 3463, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1261999

ABSTRACT

Numerous reports document the spread of SARS-CoV-2, but there is limited information on its introduction before the identification of a local case. This may lead to incorrect assumptions when modeling viral origins and transmission. Here, we utilize a sample pooling strategy to screen for previously undetected SARS-CoV-2 in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across the Mount Sinai Health System in New York. The patients had been previously evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020. We identify SARS-CoV-2 RNA from specimens collected as early as 25 January 2020, and complete SARS-CoV-2 genome sequences from multiple pools of samples collected between late February and early March, documenting an increase prior to the later surge. Our results provide evidence of sporadic SARS-CoV-2 infections a full month before both the first officially documented case and emergence of New York as a COVID-19 epicenter in March 2020.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/physiology , Humans , Nasopharynx/virology , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
5.
Nature ; 590(7844): 146-150, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065894

ABSTRACT

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in China and has since caused a pandemic of coronavirus disease 2019 (COVID-19). The first case of COVID-19 in New York City was officially confirmed on 1 March 2020 followed by a severe local epidemic1. Here, to understand seroprevalence dynamics, we conduct a retrospective, repeated cross-sectional analysis of anti-SARS-CoV-2 spike antibodies in weekly intervals from the beginning of February to July 2020 using more than 10,000 plasma samples from patients at Mount Sinai Hospital in New York City. We describe the dynamics of seroprevalence in an 'urgent care' group, which is enriched in cases of COVID-19 during the epidemic, and a 'routine care' group, which more closely represents the general population. Seroprevalence increased at different rates in both groups; seropositive samples were found as early as mid-February, and levelled out at slightly above 20% in both groups after the epidemic wave subsided by the end of May. From May to July, seroprevalence remained stable, suggesting lasting antibody levels in the population. Our data suggest that SARS-CoV-2 was introduced in New York City earlier than previously documented and describe the dynamics of seroconversion over the full course of the first wave of the pandemic in a major metropolitan area.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing/statistics & numerical data , COVID-19/epidemiology , COVID-19/immunology , Epidemiological Monitoring , SARS-CoV-2/immunology , Adolescent , Adult , Ambulatory Care/statistics & numerical data , COVID-19/diagnosis , COVID-19/virology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Urban Population/statistics & numerical data , Young Adult
6.
Science ; 369(6501): 297-301, 2020 07 17.
Article in English | MEDLINE | ID: covidwho-418857

ABSTRACT

New York City (NYC) has emerged as one of the epicenters of the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. To identify the early transmission events underlying the rapid spread of the virus in the NYC metropolitan area, we sequenced the virus that causes coronavirus disease 2019 (COVID-19) in patients seeking care at the Mount Sinai Health System. Phylogenetic analysis of 84 distinct SARS-CoV-2 genomes indicates multiple, independent, but isolated introductions mainly from Europe and other parts of the United States. Moreover, we found evidence for community transmission of SARS-CoV-2 as suggested by clusters of related viruses found in patients living in different neighborhoods of the city.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/mortality , Epidemiological Monitoring , Female , Geography, Medical , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Phylogeny , Pneumonia, Viral/mortality , Residence Characteristics , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL