ABSTRACT
There are limited data describing SARS-CoV-2-specific immune responses and their durability following infection and vaccination in nursing home residents. We conducted a prospective longitudinal evaluation of 11 consenting SARS-CoV-2-positive nursing home residents to evaluate the quantitative titers and durability of binding antibodies detected after SARS-CoV-2 infection and subsequent COVID-19 vaccination. The evaluation included nine visits over 150 days from October 25, 2020, through April 1, 2021. Visits included questionnaire administration, blood collection for serology, and paired anterior nasal specimen collection for testing by BinaxNOW™ COVID-19 Ag Card (BinaxNOW), reverse transcription polymerase chain reaction (RT-PCR), and viral culture. We evaluated quantitative titers of binding SARS-CoV-2 antibodies post-infection and post-vaccination (beginning after the first dose of the primary series). The median age among participants was 74 years; one participant was immunocompromised. Of 10 participants with post-infection serology results, 9 (90%) had detectable Pan-Ig, IgG, and IgA antibodies, and 8 (80%) had detectable IgM antibodies. At first antibody detection post-infection, two-thirds (6/9, 67%) of participants were RT-PCR-positive, but none were culture- positive. Ten participants received vaccination; all had detectable Pan-Ig, IgG, and IgA antibodies through their final observation ≤90 days post-first dose. Post-vaccination geometric means of IgG titers were 10-200-fold higher than post-infection. Nursing home residents in this cohort mounted robust immune responses to SARS-CoV-2 post-infection and post-vaccination. The augmented antibody responses post-vaccination are potential indicators of enhanced protection that vaccination may confer on previously infected nursing home residents.
Subject(s)
COVID-19 , Humans , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , RNA, Messenger , Georgia , Prospective Studies , Antibodies, Viral , Immunoglobulin A , Nursing Homes , Vaccination , Immunoglobulin GABSTRACT
BACKGROUND: Real-time reverse transcription polymerase chain reaction (rRT-PCR) and antigen tests are important diagnostics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sensitivity of antigen tests has been shown to be lower than that of rRT-PCR; however, data to evaluate epidemiologic characteristics that affect test performance are limited. METHODS: Paired mid-turbinate nasal swabs were collected from university students and staff and tested for SARS-CoV-2 using both Quidel Sofia SARS Antigen Fluorescent Immunoassay (FIA) and rRT-PCR assay. Specimens positive by either rRT-PCR or antigen FIA were placed in viral culture and tested for subgenomic RNA (sgRNA). Logistic regression models were used to evaluate characteristics associated with antigen results, rRT-PCR cycle threshold (Ct) values, sgRNA, and viral culture. RESULTS: Antigen FIA sensitivity was 78.9% and 43.8% among symptomatic and asymptomatic participants, respectively. Among rRT-PCR positive participants, negative antigen results were more likely among asymptomatic participants (odds ratio [OR] 4.6, 95% confidence interval [CI]: 1.3-15.4) and less likely among participants reporting nasal congestion (OR 0.1, 95% CI: .03-.8). rRT-PCR-positive specimens with higher Ct values (OR 0.5, 95% CI: .4-.8) were less likely, and specimens positive for sgRNA (OR 10.2, 95% CI: 1.6-65.0) more likely, to yield positive virus isolation. Antigen testing was >90% positive in specimens with Ct valuesâ <â 29. Positive predictive value of antigen test for positive viral culture (57.7%) was similar to that of rRT-PCR (59.3%). CONCLUSIONS: SARS-CoV-2 antigen test advantages include low cost, wide availability and rapid turnaround time, making them important screening tests. The performance of antigen tests may vary with patient characteristics, so performance characteristics should be accounted for when designing testing strategies and interpreting results.
Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , RNA , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity , UniversitiesABSTRACT
University settings have demonstrated potential for coronavirus disease (COVID-19) outbreaks; they combine congregate living, substantial social activity, and a young population predisposed to mild illness. Using genomic and epidemiologic data, we describe a COVID-19 outbreak at the University of Wisconsin-Madison, Madison, Wisconsin, USA. During August-October 2020, a total of 3,485 students, including 856/6,162 students living in dormitories, tested positive. Case counts began rising during move-in week, August 25-31, 2020, then rose rapidly during September 1-11, 2020. The university initiated multiple prevention efforts, including quarantining 2 dormitories; a subsequent decline in cases was observed. Genomic surveillance of cases from Dane County, in which the university is located, did not find evidence of transmission from a large cluster of cases in the 2 quarantined dorms during the outbreak. Coordinated implementation of prevention measures can reduce COVID-19 spread in university settings and may limit spillover to the surrounding community.
Subject(s)
COVID-19 , Universities , Disease Outbreaks , Humans , SARS-CoV-2 , Wisconsin/epidemiologyABSTRACT
Antigen-based tests for SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), are inexpensive and can return results within 15 minutes (1). Antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in asymptomatic and symptomatic persons within the first 5-12 days after symptom onset (2). These tests have been used at U.S. colleges and universities and other congregate settings (e.g., nursing homes and correctional and detention facilities), where serial testing of asymptomatic persons might facilitate early case identification (3-5). However, test performance data from symptomatic and asymptomatic persons are limited. This investigation evaluated performance of the Sofia SARS Antigen Fluorescent Immunoassay (FIA) (Quidel Corporation) compared with real-time reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2 detection among asymptomatic and symptomatic persons at two universities in Wisconsin. During September 28-October 9, a total of 1,098 paired nasal swabs were tested using the Sofia SARS Antigen FIA and real-time RT-PCR. Virus culture was attempted on all antigen-positive or real-time RT-PCR-positive specimens. Among 871 (79%) paired swabs from asymptomatic participants, the antigen test sensitivity was 41.2%, specificity was 98.4%, and in this population the estimated positive predictive value (PPV) was 33.3%, and negative predictive value (NPV) was 98.8%. Antigen test performance was improved among 227 (21%) paired swabs from participants who reported one or more symptoms at specimen collection (sensitivity = 80.0%; specificity = 98.9%; PPV = 94.1%; NPV = 95.9%). Virus was isolated from 34 (46.6%) of 73 antigen-positive or real-time RT-PCR-positive nasal swab specimens, including two of 18 that were antigen-negative and real-time RT-PCR-positive (false-negatives). The advantages of antigen tests such as low cost and rapid turnaround might allow for rapid identification of infectious persons. However, these advantages need to be balanced against lower sensitivity and lower PPV, especially among asymptomatic persons. Confirmatory testing with an FDA-authorized nucleic acid amplification test (NAAT), such as RT-PCR, should be considered after negative antigen test results in symptomatic persons, and after positive antigen test results in asymptomatic persons (1).