Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 12: 715023, 2021.
Article in English | MEDLINE | ID: covidwho-1477819

ABSTRACT

Emerging evidence has unveiled the secondary infection as one of the mortal causes of post-SARS-CoV-2 infection, but the factors related to secondary bacterial or fungi infection remains largely unexplored. We here systematically investigated the factors that might contribute to secondary infection. By clinical examination index analysis of patients, combined with the integrative analysis with RNA-seq analysis in the peripheral blood mononuclear cell isolated shortly from initial infection, this study showed that the antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection. Further monitoring analysis of immune cell and liver injury analysis showed that the risk of secondary infection was accompanied by severe lymphocytopenia at the intermediate and late stages and liver injury at the early stages of SARS-CoV-2. Moreover, the metagenomics analysis of bronchoalveolar lavage fluid and the microbial culture analysis, to some extent, showed that the severe pneumonia-related bacteria have already existed in the initial infection.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/pathology , Coinfection/epidemiology , Coinfection/mortality , Mycoses/epidemiology , Adult , Aged , Aged, 80 and over , Bacterial Infections/mortality , Bronchoalveolar Lavage Fluid/microbiology , CD4 Lymphocyte Count , Female , Humans , Leukocytes, Mononuclear/immunology , Liver/injuries , Liver/virology , Lymphopenia/immunology , Male , Middle Aged , Mycoses/mortality , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
2.
Clin Chim Acta ; 511: 177-180, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1385202

ABSTRACT

To clarify the effect of different respiratory sample types on SARS-CoV-2 detection, we collected throat swabs, nasal swabs and hock-a-loogie saliva or sputum, and compared their detection rates and viral loads. The detection rates of sputum (95.65%, 22/23) and hock-a-loogie saliva (88.09%, 37/42) were significantly higher than those in throat swabs (41.54%, 27/65) and nasal swabs (72.31%, 47/65) (P < 0.001). The Ct Values of sputum, hock-a-loogie saliva and nasal swabs were significantly higher than that in throat swabs, whereas no significant difference was observed between sputum and saliva samples. Hock-a-loogie saliva are reliable sample types that can be used to detect SARS-CoV-2, and worthy of clinical promotion.


Subject(s)
COVID-19/diagnosis , COVID-19/genetics , Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , Saliva/virology , Specimen Handling/standards , Adult , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Polymerase Chain Reaction/methods , Prospective Studies , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Sputum/virology , Viral Load/methods , Viral Load/standards
3.
J Leukoc Biol ; 109(1): 91-97, 2021 01.
Article in English | MEDLINE | ID: covidwho-1188013

ABSTRACT

Regulatory T cell can protect against severe forms of coronaviral infections attributable to host inflammatory responses. But its role in the pathogenesis of COVID-19 is still unclear. In this study, frequencies of total and multiple subsets of lymphocytes in peripheral blood of COVID-19 patients and discharged individuals were analyzed using a multicolor flow cytometry assay. Plasma concentration of IL-10 was measured using a microsphere-based immunoassay kit. Comparing to healthy controls, the frequencies of total lymphocytes and T cells decreased significantly in both acutely infected COVID-19 patients and discharged individuals. The frequencies of total lymphocytes correlated negatively with the frequencies of CD3- CD56+ NK cells. The frequencies of regulatory CD8+ CD25+ T cells correlated with CD4+ /CD8+ T cell ratios positively, while the frequencies of regulatory CD4+ CD25+ CD127- T cells correlated negatively with CD4+ /CD8+ T cell ratios. Ratios of CD4+ /CD8+ T cells increased significantly in patients beyond age of 45 years. And accordingly, the frequencies of regulatory CD8+ CD25+ T cells were also found significantly increased in these patients. Collectively, the results suggest that regulatory CD4+ and CD8+ T cells may play distinct roles in the pathogenesis of COVID-19. Moreover, the data indicate that NK cells might contribute to the COVID-19 associated lymphopenia.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , SARS-CoV-2 , T-Lymphocytes, Regulatory , Adult , Aged , Antigens, CD/blood , Antigens, CD/immunology , CD4-CD8 Ratio , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Female , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology
5.
Front Med ; 14(6): 746-751, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-813358

ABSTRACT

The ongoing pandemic of Coronavirus disease 19 (COVID-19) is caused by a newly discovered ß Coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6-7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6-7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6-7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4+ and CD8+ cells were increased upon SARS-CoV-2 antigen stimulation. Together, these results indicate that durable anti-SARS-CoV-2 immunity is common in convalescent population, and vaccines developed from 614D variant may offer protection from the currently predominant 614D variant of SARS-CoV-2.


Subject(s)
Adaptive Immunity/physiology , Antibodies, Neutralizing/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , T-Lymphocytes/physiology , Adult , Aged , COVID-19/blood , COVID-19/diagnosis , Cohort Studies , Female , Humans , Male , Middle Aged , Time Factors , Viral Proteins/immunology
9.
World J Gastroenterol ; 26(32): 4753-4762, 2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-760961

ABSTRACT

The outbreak of novel coronavirus disease 2019 (COVID-19) has resulted in global emergence. With the expansion of related research, in addition to respiratory symptoms, digestive system involvement such as nausea, vomiting, and diarrhea have also been reported with COVID-19. Besides, abnormal liver function is also frequent in biochemical tests of COVID-19 patients, which is correlated with the severity and mortality of the disease course. The etiology of liver injury in patients with COVID-19 might include viral immunologic injury, drug-induced liver injury, the systemic inflammatory response, hypoxic hepatitis, and the exacerbation of preexisting liver disease. Although liver injuries in COVID-19 are often transient and reversible, health workers need to pay attention to preexisting liver disease, monitor liver function, strengthen supportive treatment, and reduce the chance of drug-induced liver injury. This article reviews the epidemiological characteristics, etiology, management, and preventive strategies for liver injury in patients with COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Liver Diseases/virology , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/virology , Disease Management , Female , Humans , Liver/virology , Liver Diseases/epidemiology , Liver Function Tests , Male , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
10.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: covidwho-744959

ABSTRACT

BACKGROUND: Timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated. METHOD: Serial sera of 80 patients with PCR-confirmed coronavirus disease 2019 (COVID-19) were collected at the First Affiliated Hospital of Zhejiang University, Hangzhou, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described. RESULTS: The seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e.) or 9, 10 and 12 days post onset (d.p.o.), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0-7 d.p.o), Ab showed the highest sensitivity (64.1%) compared with IgM and IgG (33.3% for both; p<0.001). The sensitivities of Ab, IgM and IgG increased to 100%, 96.7% and 93.3%, respectively, 2 weeks later. When the same antibody type was detected, no significant difference was observed between enzyme-linked immunosorbent assays and other forms of immunoassays. CONCLUSIONS: A typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic-specific diagnosis and helpful information to evaluate the adapted immunity status of patients.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Adult , Aged , COVID-19 , COVID-19 Testing , China , Coronavirus Infections/complications , Female , Hospitalization , Humans , Infectious Disease Incubation Period , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion , Symptom Assessment , Time Factors , Viral Load
11.
Chin. Trad. Herbal Drugs ; 9(51): 2317-2325, 20200512.
Article in Chinese | WHO COVID, ELSEVIER | ID: covidwho-681930

ABSTRACT

Objective: To investigate the mechanism of Farfarae Flos (FF) in Qingfei Paidu Decoction against coronavirus disease 2019 (COVID-19) based on network pharmacology and molecular docking. Methods: Based on our previous study, the main compounds in FF were selected. The potential targets of FF were searched by Swiss Target Prediction and BATMAN-TCM database. GenCLiP 3 and GeneCard were used to predict and screen the therapeutic targets of COVID-19, and then Cytoscape 3.7.1 was used to build the compound-target-disease network. The String database was used to build the target PPI network. Gene ontology (GO) function enrichment analysis and KEGG pathway enrichment analysis were performed in the DAVID database. Molecular docking was performed based on the above compounds and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL hydrolase and angiotensin converting enzyme II (ACE2). Results: The compound-target-disease network contained 14 compounds, 104 targets and four diseases. GO function enrichment analysis revealed 444 GO items (P < 0.05), including 325 biological process (BP) items, 44 cell composition (CC) items and 75 molecular function (MF) items. A total of 94 signal pathways (P < 0.05) were screened out by KEGG pathway enrichment analysis. The results of molecular docking showed that the affinity of 3,4-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid with proteins were better than Remdesivir. Conclusion: The compounds in FF can bind with SARS-CoV-2 3CL hydrolase and ACE2, and then act on many targets to regulate multiple signaling pathways, thus exerting the therapeutic effect on COVID-19.

12.
BMJ ; 369: m1443, 2020 04 21.
Article in English | MEDLINE | ID: covidwho-99975

ABSTRACT

OBJECTIVE: To evaluate viral loads at different stages of disease progression in patients infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first four months of the epidemic in Zhejiang province, China. DESIGN: Retrospective cohort study. SETTING: A designated hospital for patients with covid-19 in Zhejiang province, China. PARTICIPANTS: 96 consecutively admitted patients with laboratory confirmed SARS-CoV-2 infection: 22 with mild disease and 74 with severe disease. Data were collected from 19 January 2020 to 20 March 2020. MAIN OUTCOME MEASURES: Ribonucleic acid (RNA) viral load measured in respiratory, stool, serum, and urine samples. Cycle threshold values, a measure of nucleic acid concentration, were plotted onto the standard curve constructed on the basis of the standard product. Epidemiological, clinical, and laboratory characteristics and treatment and outcomes data were obtained through data collection forms from electronic medical records, and the relation between clinical data and disease severity was analysed. RESULTS: 3497 respiratory, stool, serum, and urine samples were collected from patients after admission and evaluated for SARS-CoV-2 RNA viral load. Infection was confirmed in all patients by testing sputum and saliva samples. RNA was detected in the stool of 55 (59%) patients and in the serum of 39 (41%) patients. The urine sample from one patient was positive for SARS-CoV-2. The median duration of virus in stool (22 days, interquartile range 17-31 days) was significantly longer than in respiratory (18 days, 13-29 days; P=0.02) and serum samples (16 days, 11-21 days; P<0.001). The median duration of virus in the respiratory samples of patients with severe disease (21 days, 14-30 days) was significantly longer than in patients with mild disease (14 days, 10-21 days; P=0.04). In the mild group, the viral loads peaked in respiratory samples in the second week from disease onset, whereas viral load continued to be high during the third week in the severe group. Virus duration was longer in patients older than 60 years and in male patients. CONCLUSION: The duration of SARS-CoV-2 is significantly longer in stool samples than in respiratory and serum samples, highlighting the need to strengthen the management of stool samples in the prevention and control of the epidemic, and the virus persists longer with higher load and peaks later in the respiratory tissue of patients with severe disease.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , COVID-19 , China , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Viral Load
13.
J Clin Transl Hepatol ; 8(1): 13-17, 2020 Mar 28.
Article in English | MEDLINE | ID: covidwho-50478

ABSTRACT

An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (2019 coronavirus disease, COVID-19) since December 2019, from Wuhan, China, has been posing a significant threat to global human health. The clinical features and outcomes of Chinese patients with COVID-19 have been widely reported. Increasing evidence has witnessed the frequent incident liver injury in COVID-19 patients, and it is often manifested as transient elevation of serum aminotransferases; however, the patients seldom have liver failure and obvious intrahepatic cholestasis, unless pre-existing advanced liver disease was present. The underlying mechanisms of liver injury in cases of COVID-19 might include psychological stress, systemic inflammation response, drug toxicity, and progression of pre-existing liver diseases. However, there is insufficient evidence for SARS-CoV-2 infected hepatocytes or virus-related liver injury in COVID-19 at present. The clinical, pathological and laboratory characteristics as well as underlying pathophysiology and etiology of liver injury in COVID-19 remain largely unclear. In this review, we highlight these important issues based on the recent developments in the field, for optimizing the management and treatment of liver injury in Chinese patients with COVID-19.

14.
Emerg Infect Dis ; 26(6): 1335-1336, 2020 06.
Article in English | MEDLINE | ID: covidwho-4834

ABSTRACT

A woman with coronavirus disease in her 35th week of pregnancy delivered an infant by cesarean section in a negative-pressure operating room. The infant was negative for severe acute respiratory coronavirus 2. This case suggests that mother-to-child transmission is unlikely for this virus.


Subject(s)
Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Adult , Betacoronavirus , COVID-19 , Cesarean Section , China , Coronavirus Infections/therapy , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Male , Pandemics , Pneumonia, Viral/therapy , Pregnancy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL