Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 13(1): 3979, 2022 Jul 09.
Article in English | MEDLINE | ID: covidwho-1927086

ABSTRACT

Despite timely immunization programs, and efficacious vaccines conveying protection against SARS-CoV-2 infection, breakthrough infections in vaccinated individuals have been reported. The Delta variant of concern (VOC) outbreak in Guangzhou resulted in local transmission in vaccinated and non-vaccinated residents, providing a unique opportunity to study the protective effects of the inactivated vaccines in breakthrough infection. Here, we find that the 2-dose vaccinated group has similar peak viral titers and comparable speeds of viral RNA clearance to the non-vaccinated group but accelerated viral suppression in the middle course of the disease. We quantitatively demonstrate that peak viral pneumonia is significantly mitigated in the 2-dose vaccine group (median 0.298%) compared with the non-vaccinated (5.77%) and 1-dose vaccine (3.34%) groups. Pneumonia absorbance is approximately 6 days ahead in the 2-dose group (median 10 days) than in the non-vaccinated group (16 days) (p = 0.003). We also observe reduced cytokine inflammation and markedly undisturbed gene transcription profiles of peripheral blood mononuclear cells (PBMCs) in the 2-dose group. In short, our study demonstrates that prior vaccination substantially restrains pneumonia development, reduces cytokine storms, and facilitates clinical recovery.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Vaccination
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1762251

ABSTRACT

In contrast to dexamethasone, the clinical efficacy of methylprednisolone (MP) remains controversial, and a systems biology study on its mechanism is lacking. In this study, a total of 38 severe COVID-19 patients were included. The demographics, clinical characteristics, and severity biomarkers including C-reactive protein (CRP), d-dimer, albumin, and Krebs von den Lungen 6 of patients receiving MP (n=26, 40 mg or 80 mg daily for 3-5 days) and supportive therapy (n=12) were compared. Longitudinal measurements of 92 cytokines in MP group from admission to over six months after discharge were performed by multiplex Proximity Extension Assay. The results showed that demographics, baseline clinical characteristics were similar in MP and non-MP groups. No death occurred and the hospital stays between the two groups were similar. Kinetics studies showed that MP was not better than supportive therapy at improving the four severity biomarkers. Cytokines in MP group were characterized by five clusters according to their baseline levels and responses to MP. The immunological feature of severe COVID-19 could be defined by the “core signature” cytokines in cluster 2: MCP-3, IL-6, IFN-γ, and CXCL10, which strongly correlated with each other and CRP, and are involved in cytokine release storm. The “core signature” cytokines were significantly upregulated at baseline and remained markedly elevated after MP treatment. Our work showed a short course of MP therapy could not rapidly improve the immune disorders among severe COVID-19 patients or clinical outcomes, also confirmed “core signature” cytokines, as severity biomarkers similar to CRP, could be applied to evaluate clinical treatment effect.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329675

ABSTRACT

With the development of COVID-19, even though increased global vaccination coverage, a super variant of SARS-CoV-2, Omicron, carrying a great number of mutations, has been verified its strong capacity of immune escape. An increased risk of SARS-CoV-2 reinfection or breakthrough infection should be concerned. We analyzed the humoral immune response of Omicron breakthrough infection and found its cross-neutralization against VOCs. We established mouse models to verify whether Omicron-specific RBD subunit boost immune response by immunizing Omicron-RBD recombinant proteins. The results suggest that an additional boost vaccination with Omicron-RBD protein could increase humoral immune response against both WT and current VOCs.

4.
EClinicalMedicine ; 40: 101129, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401440

ABSTRACT

BACKGROUND: A novel variant of SARS-CoV-2, the Delta variant of concern (VOC, also known as lineage B.1.617.2), is fast becoming the dominant strain globally. We reported the epidemiological, viral, and clinical characteristics of hospitalized patients infected with the Delta VOC during the local outbreak in Guangzhou, China. METHODS: We extracted the epidemiological and clinical information pertaining to the 159 cases infected with the Delta VOC across seven transmission generations between May 21 and June 18, 2021. The whole chain of the Delta VOC transmission was described. Kinetics of viral load and clinical characteristics were compared with a cohort of wild-type infection in 2020 admitted to the Guangzhou Eighth People's Hospital. FINDINGS: There were four transmission generations within the first ten days. The Delta VOC yielded a significantly shorter incubation period (4.0 vs. 6.0 days), higher viral load (20.6 vs. 34.0, cycle threshold of the ORF1a/b gene), and a longer duration of viral shedding in pharyngeal swab samples (14.0 vs. 8.0 days) compared with the wild-type strain. In cases with critical illness, the proportion of patients over the age of 60 was higher in the Delta VOC group than in the wild-type strain (100.0% vs. 69.2%, p = 0.03). The Delta VOC had a higher risk than wild-type infection in deterioration to critical status (hazards ratio 2.98 [95%CI 1.29-6.86]; p = 0.01). INTERPRETATION: Infection with the Delta VOC is characterized by markedly increased transmissibility, viral loads and risk of disease progression compared with the wild-type strain, calling for more intensive prevention and control measures to contain future outbreaks. FUNDING: National Grand Program, National Natural Science Foundation of China, Guangdong Provincial Department of Science and Technology, Guangzhou Laboratory.

5.
Nat Commun ; 12(1): 4984, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361636

ABSTRACT

SARS-CoV-2 vaccination has been launched worldwide to build effective population-level immunity to curb the spread of this virus. The effectiveness and duration of protective immunity is a critical factor for public health. Here, we report the kinetics of the SARS-CoV-2 specific immune response in 204 individuals up to 1-year after recovery from COVID-19. RBD-IgG and full-length spike-IgG concentrations and serum neutralizing capacity decreases during the first 6-months, but is maintained stably up to 1-year after hospital discharge. Even individuals who had generated high IgG levels during early convalescent stages had IgG levels that had decreased to a similar level one year later. Notably, the RBD-IgG level positively correlates with serum neutralizing capacity, suggesting the representative role of RBD-IgG in predicting serum protection. Moreover, viral-specific cellular immune protection, including spike and nucleoprotein specific, persisted between 6 months and 12 months. Altogether, our study supports the persistence of viral-specific protective immunity over 1 year.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology
6.
J Med Virol ; 93(4): 2505-2512, 2021 04.
Article in English | MEDLINE | ID: covidwho-1023298

ABSTRACT

To investigate the dynamic changes of Krebs von den Lungen-6 (KL-6) among patients with coronavirus disease 2019 (COVID-19) and the role of KL-6 as a noninvasive biomarker for predicting long-term lung injury, the clinical information and laboratory tests of 166 COVID-19 patients were collected, and a correlation analysis between KL-6 and other parameters was conducted. There were 17 (10.2%, 17/166) severe/critical and 149 (89.8%, 149/166) mild COVID-19 patients in our cohort. Serum KL-6 was significantly higher in severe/critical COVID-19 patients than in mild patients (median 898.0 vs. 451.2 U/ml, p < .001). KL-6 was next confirmed to be a sensitive and specific biomarker for distinguishing mild and severe/critical patients and correlate to computed tomography lung lesions areas. Serum KL-6 concentration during the follow-up period (>100 days postonset) was well correlated to those concentrations within 10 days postonset (Pearson r = .867, p < .001), indicating the prognostic value of KL-6 levels in predicting lung injury after discharge. Finally, elevated KL-6 was found to be significantly correlated to coagulation disorders, and T cells subsets dysfunctions. In summary, serum KL-6 is a biomarker for assessing COVID-19 severity and predicting the prognosis of lung injury of discharged patients.


Subject(s)
COVID-19/blood , Lung Injury/blood , Mucin-1/blood , Adult , Aged , Biomarkers/blood , COVID-19/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Lung/physiopathology , Lung Injury/diagnostic imaging , Lung Injury/physiopathology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed/methods
7.
Cell Mol Immunol ; 17(11): 1119-1125, 2020 11.
Article in English | MEDLINE | ID: covidwho-841899

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been redetected after discharge in some coronavirus disease 2019 (COVID-19) patients. The reason for the recurrent positivity of the test and the potential public health concern due to this occurrence are still unknown. Here, we analyzed the viral data and clinical manifestations of 289 domestic Chinese COVID-19 patients and found that 21 individuals (7.3%) were readmitted for hospitalization after detection of SARS-CoV-2 after discharge. First, we experimentally confirmed that the virus was involved in the initial infection and was not a secondary infection. In positive retests, the virus was usually found in anal samples (15 of 21, 71.4%). Through analysis of the intracellular viral subgenomic messenger RNA (sgmRNA), we verified that positive retest patients had active viral replication in their gastrointestinal tracts (3 of 16 patients, 18.7%) but not in their respiratory tracts. Then, we found that viral persistence was not associated with high viral titers, delayed viral clearance, old age, or more severe clinical symptoms during the first hospitalization. In contrast, viral rebound was associated with significantly lower levels of and slower generation of viral receptor-binding domain (RBD)-specific IgA and IgG antibodies. Our study demonstrated that the positive retest patients failed to create a robust protective humoral immune response, which might result in SARS-CoV-2 persistence in the gastrointestinal tract and possibly in active viral shedding. Further exploration of the mechanism underlying the rebound in SARS-CoV-2 in this population will be crucial for preventing virus spread and developing effective vaccines.


Subject(s)
Betacoronavirus/physiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Gastrointestinal Tract/virology , Pneumonia, Viral/diagnosis , Antibodies, Viral/metabolism , COVID-19 , COVID-19 Testing , Coronavirus Infections/immunology , Epitopes/immunology , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Pandemics , Pneumonia, Viral/immunology , Protein Binding , Protein Domains/immunology , SARS-CoV-2 , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Shedding
8.
Emerg Microbes Infect ; 9(1): 469-473, 2020.
Article in English | MEDLINE | ID: covidwho-2765

ABSTRACT

The novel coronavirus (2019-nCoV) infection caused pneumonia. we retrospectively analyzed the virus presence in the pharyngeal swab, blood, and the anal swab detected by real-time PCR in the clinical lab. Unexpectedly, the 2109-nCoV RNA was readily detected in the blood (6 of 57 patients) and the anal swabs (11 of 28 patients). Importantly, all of the 6 patients with detectable viral RNA in the blood cohort progressed to severe symptom stage, indicating a strong correlation of serum viral RNA with the disease severity (p-value = 0.0001). Meanwhile, 8 of the 11 patients with annal swab virus-positive was in severe clinical stage. However, the concentration of viral RNA in the anal swab (Ct value = 24 + 39) was higher than in the blood (Ct value = 34 + 39) from patient 2, suggesting that the virus might replicate in the digestive tract. Altogether, our results confirmed the presence of virus RNA in extra-pulmonary sites.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , RNA, Viral/blood , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Humans , Pneumonia, Viral , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL