Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect Dis ; 225(2): 282-286, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1556876

ABSTRACT

In hamsters, SARS-CoV-2 infection at the same time as or before H3N2 influenza virus infection resulted in significantly reduced influenza virus titers in the lungs and nasal turbinates. This interference may be correlated with SARS-CoV-2-induced expression of MX1.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Myxovirus Resistance Proteins/metabolism , SARS-CoV-2 , Virus Replication , Animals , Coinfection , Cricetinae , Humans , Mesocricetus
2.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Article in English | MEDLINE | ID: covidwho-1257920

ABSTRACT

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Subject(s)
Algorithms , Models, Biological , Genomics , Proteins
3.
Emerg Infect Dis ; 27(2): 660-663, 2021 02.
Article in English | MEDLINE | ID: covidwho-1048933

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 readily transmits between domestic cats. We found that domestic cats that recover from an initial infection might be protected from reinfection. However, we found long-term persistence of inflammation and other lung lesions after infection, despite a lack of clinical symptoms and limited viral replication in the lungs.


Subject(s)
COVID-19/veterinary , Cat Diseases/immunology , Cat Diseases/virology , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/virology , Cats , Lung/immunology , Lung/virology , Virus Replication/immunology
4.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-611003

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL