Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438095

ABSTRACT

OBJECTIVE: To determine clinical and ethnodemographic correlates of serological responses against the SARS-CoV-2 spike glycoprotein following mild-to-moderate COVID-19. DESIGN: A retrospective cohort study of healthcare workers who had self-isolated due to COVID-19. SETTING: University Hospitals Birmingham NHS Foundation Trust, UK (UHBFT). PARTICIPANTS: 956 healthcare workers were recruited by open invitation via UHBFT trust email and social media between 27 April 2020 and the 8 June 2020. INTERVENTION: Participants volunteered a venous blood sample that was tested for the presence of anti-SARS-CoV-2 spike glycoprotein antibodies. Results were interpreted in the context of the symptoms of their original illness and ethnodemographic variables. RESULTS: Using an assay that simultaneously measures the combined IgG, IgA and IgM response against the spike glycoprotein (IgGAM), the overall seroprevalence within this cohort was 46.2% (n=442/956). The seroprevalence of immunoglobulin isotypes was 36.3%, 18.7% and 8.1% for IgG, IgA and IgM, respectively. IgGAM identified serological responses in 40.6% (n=52/128) of symptomatic individuals who reported a negative SARS-CoV-2 PCR test. Increasing age, non-white ethnicity and obesity were independently associated with greater IgG antibody response against the spike glycoprotein. Self-reported fever and fatigue were associated with greater IgG and IgA responses against the spike glycoprotein. The combination of fever and/or cough and/or anosmia had a positive predictive value of 92.3% for seropositivity in self-isolating individuals a time when Wuhan strain SARS-CoV-2 was predominant. CONCLUSIONS AND RELEVANCE: Assays employing combined antibody detection demonstrate enhanced seroepidemiological sensitivity and can detect prior viral exposure even when PCR swabs have been negative. We demonstrate an association between known ethnodemographic risk factors associated with mortality from COVID-19 and the magnitude of serological responses in mild-to-moderate disease.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 , Adult , COVID-19/immunology , Female , Health Personnel , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , United Kingdom
3.
JMIR Res Protoc ; 9(12): e22570, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-993058

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to many countries implementing lockdown procedures, resulting in the suspension of laboratory research. With lockdown measures now easing in some areas, many laboratories are preparing to reopen. This is particularly challenging for clinical research laboratories due to the dual risk of patient samples carrying the virus that causes COVID-19, SARS-CoV-2, and the risk to patients being exposed to research staff during clinical sampling. To date, no confirmed transmission of the virus has been confirmed within a laboratory setting; however, operating processes and procedures should be adapted to ensure safe working of samples of positive, negative, or unknown COVID-19 status. OBJECTIVE: In this paper, we propose a framework for reopening a clinical research laboratory and resuming operations with the aim to maximize research capacity while minimizing the risk to research participants and staff. METHODS: This framework was developed by consensus among experienced laboratory staff who have prepared to reopen a clinical research laboratory. RESULTS: Multiple aspects need to be considered to reopen a clinical laboratory. We describe our process to stratify projects by risk, including assessment of donor risk and COVID-19 clinical status, the COVID-19 status of the specific sample type, and how to safely process each sample type. We describe methods to prepare the laboratory for safe working including maintaining social distancing through signage, one-way systems and access arrangements for staff and patients, limiting staff numbers on site and encouraging home working for all nonlaboratory tasks including data analysis and writing. Shared equipment usage was made safe by adapting booking systems to allow for the deployment of cleaning protocols. All risk assessments and standard operating procedures were rewritten and approved by local committees, and staff training was initiated to ensure compliance. CONCLUSIONS: Laboratories can adopt and adapt this framework to expedite reopening a clinical laboratory during the current COVID-19 pandemic while mitigating the risk to research participants and staff.

SELECTION OF CITATIONS
SEARCH DETAIL
...