Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314568

ABSTRACT

Global infection and mortality rates from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are disproportionately high in certain populations, including amongst older people. Care home residents are frequently exposed to infection due to contact with staff and other residents, and are highly susceptible to infection due to their age and co-morbidity. In England, official statistics suggest that at least 25% of all deaths in care home residents since the start of pandemic are linked to coronavirus disease 2019 (COVID-19), but limited testing for SARS-CoV-2 early in the pandemic means estimates of the true burden of disease are lacking. Additionally, little is known about patterns of transmission between care homes, the community and hospitals, or the relationship between infection and immunity in care home staff and residents. The VIVALDI study plans to address these questions. VIVALDI is a prospective cohort study aiming to recruit  6,500 staff and 5000 residents from 105 care homes across England. Successive rounds of testing for infection will be performed over a period of 12 months.  Nasopharyngeal swabs will detect evidence of viral RNA and therefore active infection (accompanied by collection of data on symptoms), whereas blood tests will detect antibodies and evidence of cellular immunity to SARS-CoV-2. Whole genome sequencing of viral isolates to investigate pathways of transmission of infection is planned in collaboration with the COVID-19 Genomics UK Consortium. Qualitative interviews with care home staff will investigate the impact of the pandemic on ways of working and how test results influence infection control practices and behaviours. Data from residents and staff will be linked to national datasets on hospital admissions, antibody and PCR test results, mortality and care home characteristics.  Data generated will support national public health efforts to prevent transmission of COVID-19 and protect care home staff and residents from infection. Protocol registration : ISRCTN14447421 05/06/2020

3.
Nat Med ; 28(5): 1072-1082, 2022 05.
Article in English | MEDLINE | ID: covidwho-1684095

ABSTRACT

Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2-3 months after two ChAdOx1 doses, for 5-8 months after two BNT162b2 doses in those without prior infection and for 1-2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19/prevention & control , Humans , Immunoglobulin G , Male
4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-297068

ABSTRACT

Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out, there is an urgent need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity at speed. We evaluate whether a single vaccination in previously infected individuals generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single dose of ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults who received at least one vaccination, 13,404 (13.3%) had serological and/or PCR evidence of prior infection. Prior infection significantly boosted antibody responses for all three vaccines, producing a higher peak level and longer half-life, and a response comparable to those without prior infection receiving two vaccinations. In those with prior infection, median time above the positivity threshold was estimated to last for >1 year after the first dose. Single-dose vaccination targeted to those previously infected may provide protection in populations with high rates of previous infection faced with limited vaccine supply, as an interim measure while vaccine campaigns are scaled up.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296953

ABSTRACT

Vaccination provides a powerful tool for mitigating and controlling the COVID-19 pandemic. However, a number of factors reduce these potential benefits. The first problem arises from heterogeneities in vaccine supply and uptake: from global inequities in vaccine distribution, to local variations in uptake derived from vaccine hesitancy. The second complexity is biological: though several COVID-19 vaccines offer substantial protection against infection and disease, 'breakthrough' reinfection of vaccinees (and subsequent retransmission from these individuals) can occur, driven especially by new viral variants. Here, using a simple epidemiological model, we show that the combination of infection of remaining susceptible individuals and breakthrough infections of vaccinees can have significant effects in promoting infection of invading variants, even when vaccination rates are high and onward transmission from vaccinees relatively weak. Elaborations of the model show how heterogeneities in immunity and mixing between vaccinated and unvaccinated sub-populations modulate these effects, underlining the importance of quantifying these variables. Overall, our results indicate that high vaccination coverage still leaves no room for complacency if variants are circulating that can elude immunity, even if this happens at very low rates.

6.
Lancet Reg Health Eur ; 13: 100282, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1559972

ABSTRACT

BACKGROUND: The COVID-19 pandemic is rapidly evolving, with emerging variants and fluctuating control policies. Real-time population screening and identification of groups in whom positivity is highest could help monitor spread and inform public health messaging and strategy. METHODS: To develop a real-time screening process, we included results from nose and throat swabs and questionnaires taken 19 July 2020-17 July 2021 in the UK's national COVID-19 Infection Survey. Fortnightly, associations between SARS-CoV-2 positivity and 60 demographic and behavioural characteristics were estimated using logistic regression models adjusted for potential confounders, considering multiple testing, collinearity, and reverse causality. FINDINGS: Of 4,091,537 RT-PCR results from 482,677 individuals, 29,903 (0·73%) were positive. As positivity rose September-November 2020, rates were independently higher in younger ages, and those living in Northern England, major urban conurbations, more deprived areas, and larger households. Rates were also higher in those returning from abroad, and working in healthcare or outside of home. When positivity peaked December 2020-January 2021 (Alpha), high positivity shifted to southern geographical regions. With national vaccine roll-out from December 2020, positivity reduced in vaccinated individuals. Associations attenuated as rates decreased between February-May 2021. Rising positivity rates in June-July 2021 (Delta) were independently higher in younger, male, and unvaccinated groups. Few factors were consistently associated with positivity. 25/45 (56%) confirmed associations would have been detected later using 28-day rather than 14-day periods. INTERPRETATION: Population-level demographic and behavioural surveillance can be a valuable tool in identifying the varying characteristics driving current SARS-CoV-2 positivity, allowing monitoring to inform public health policy. FUNDING: Department of Health and Social Care (UK), Welsh Government, Department of Health (on behalf of the Northern Ireland Government), Scottish Government, National Institute for Health Research.

8.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296296

ABSTRACT

We investigated anti-spike IgG antibody responses and correlates of protection following second doses of ChAdOx1 or BNT162b2 SARS-CoV-2 vaccines in the UK general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Antibody levels declined faster at older ages and in males with BNT162b2, but declines were similar across ages and sexes with ChAdOX1. Prior infection significantly increased antibody half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2-3 months after two ChAdOx1 doses and 6-15 months after two BNT162b2 doses in those without prior infection, and 1-2 years for those unvaccinated after natural infection. A third booster dose may be needed, prioritised to ChAdOx1 recipients and those more clinically vulnerable.

9.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295762

ABSTRACT

The effectiveness of COVID-19 vaccination in preventing new SARS-CoV-2 infections in the general community is still unclear. Here, we used the Office for National Statistics (ONS) COVID-19 Infection Survey, a large community-based survey of individuals living in randomly selected private households across the UK, to assess the effectiveness of BNT162b2 (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca;ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30) as a surrogate for viral load, and gene positivity pattern (compatible with B.1.1.7 or not). Using 1,945,071 RT-PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021, we found that vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 days after the first dose (61%, 95% CI 54 to 68% versus 66%, 95% CI 60 to 71%, respectively) with greater reductions observed after a second dose (79%, 95% CI 65 to 88% versus 80%, 95% CI 73 to 85%, respectively). Largest reductions were observed for symptomatic infections and/or infections with a higher viral burden. Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of difference between the BNT162b2 and ChAdOx1 vaccines.

10.
Elife ; 92020 06 08.
Article in English | MEDLINE | ID: covidwho-1497819

ABSTRACT

SARS-CoV-2 presents an unprecedented international challenge, but it will not be the last such threat. Here, we argue that the world needs to be much better prepared to rapidly detect, define and defeat future pandemics. We propose that a Global Immunological Observatory and associated developments in systems immunology, therapeutics and vaccine design should be at the heart of this enterprise.


Subject(s)
Communicable Disease Control/organization & administration , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/epidemiology , Disaster Planning/organization & administration , Global Health , International Cooperation , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Population Surveillance , Animals , Anti-Infective Agents , COVID-19 , Climate Change , Cohort Studies , Communicable Disease Control/methods , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Drug Development , Forecasting , Global Health/trends , Humans , Interdisciplinary Communication , Mass Screening/organization & administration , Models, Animal , Population Surveillance/methods , Serologic Tests , Vaccines , Weather , Zoonoses
12.
Nat Commun ; 12(1): 6250, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493099

ABSTRACT

Understanding the trajectory, duration, and determinants of antibody responses after SARS-CoV-2 infection can inform subsequent protection and risk of reinfection, however large-scale representative studies are limited. Here we estimated antibody response after SARS-CoV-2 infection in the general population using representative data from 7,256 United Kingdom COVID-19 infection survey participants who had positive swab SARS-CoV-2 PCR tests from 26-April-2020 to 14-June-2021. A latent class model classified 24% of participants as 'non-responders' not developing anti-spike antibodies, who were older, had higher SARS-CoV-2 cycle threshold values during infection (i.e. lower viral burden), and less frequently reported any symptoms. Among those who seroconverted, using Bayesian linear mixed models, the estimated anti-spike IgG peak level was 7.3-fold higher than the level previously associated with 50% protection against reinfection, with higher peak levels in older participants and those of non-white ethnicity. The estimated anti-spike IgG half-life was 184 days, being longer in females and those of white ethnicity. We estimated antibody levels associated with protection against reinfection likely last 1.5-2 years on average, with levels associated with protection from severe infection present for several years. These estimates could inform planning for vaccination booster strategies.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antibody Formation/physiology , Bayes Theorem , Female , Humans , Immunoglobulin G/metabolism , Male , Middle Aged , SARS-CoV-2/immunology
13.
Nat Med ; 27(12): 2127-2135, 2021 12.
Article in English | MEDLINE | ID: covidwho-1469978

ABSTRACT

The effectiveness of the BNT162b2 and ChAdOx1 vaccines against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections requires continuous re-evaluation, given the increasingly dominant B.1.617.2 (Delta) variant. In this study, we investigated the effectiveness of these vaccines in a large, community-based survey of randomly selected households across the United Kingdom. We found that the effectiveness of BNT162b2 and ChAdOx1 against infections (new polymerase chain reaction (PCR)-positive cases) with symptoms or high viral burden is reduced with the B.1.617.2 variant (absolute difference of 10-13% for BNT162b2 and 16% for ChAdOx1) compared to the B.1.1.7 (Alpha) variant. The effectiveness of two doses remains at least as great as protection afforded by prior natural infection. The dynamics of immunity after second doses differed significantly between BNT162b2 and ChAdOx1, with greater initial effectiveness against new PCR-positive cases but faster declines in protection against high viral burden and symptomatic infection with BNT162b2. There was no evidence that effectiveness varied by dosing interval, but protection was higher in vaccinated individuals after a prior infection and in younger adults. With B.1.617.2, infections occurring after two vaccinations had similar peak viral burden as those in unvaccinated individuals. SARS-CoV-2 vaccination still reduces new infections, but effectiveness and attenuation of peak viral burden are reduced with B.1.617.2.


Subject(s)
/immunology , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/immunology , /statistics & numerical data , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Humans , Middle Aged , Polymerase Chain Reaction , United Kingdom/epidemiology , Vaccination , Viral Load , Young Adult
14.
Cell ; 184(19): 4848-4856, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1363914

ABSTRACT

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Animals , Biological Evolution , COVID-19/virology , Humans , Laboratories , SARS-CoV-2/genetics , Zoonoses/virology
15.
Science ; 373(6562): eabj7364, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1361961

ABSTRACT

Vaccines provide powerful tools to mitigate the enormous public health and economic costs that the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to exert globally, yet vaccine distribution remains unequal among countries. To examine the potential epidemiological and evolutionary impacts of "vaccine nationalism," we extend previous models to include simple scenarios of stockpiling between two regions. In general, when vaccines are widely available and the immunity they confer is robust, sharing doses minimizes total cases across regions. A number of subtleties arise when the populations and transmission rates in each region differ, depending on evolutionary assumptions and vaccine availability. When the waning of natural immunity contributes most to evolutionary potential, sustained transmission in low-access regions results in an increased potential for antigenic evolution, which may result in the emergence of novel variants that affect epidemiological characteristics globally. Overall, our results stress the importance of rapid, equitable vaccine distribution for global control of the pandemic.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Global Health , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Emigration and Immigration , Evolution, Molecular , Humans , Immune Evasion , Models, Theoretical , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Strategic Stockpile , Vaccination Coverage
16.
Nat Microbiol ; 6(9): 1140-1149, 2021 09.
Article in English | MEDLINE | ID: covidwho-1320232

ABSTRACT

We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged >60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a 'low responder' group that more commonly consisted of people aged >75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged >60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Cohort Studies , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/genetics , United Kingdom , Young Adult
17.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: covidwho-1305889

ABSTRACT

Background: Information on SARS-CoV-2 in representative community surveillance is limited, particularly cycle threshold (Ct) values (a proxy for viral load). Methods: We included all positive nose and throat swabs 26 April 2020 to 13 March 2021 from the UK's national COVID-19 Infection Survey, tested by RT-PCR for the N, S, and ORF1ab genes. We investigated predictors of median Ct value using quantile regression. Results: Of 3,312,159 nose and throat swabs, 27,902 (0.83%) were RT-PCR-positive, 10,317 (37%), 11,012 (40%), and 6550 (23%) for 3, 2, or 1 of the N, S, and ORF1ab genes, respectively, with median Ct = 29.2 (~215 copies/ml; IQR Ct = 21.9-32.8, 14-56,400 copies/ml). Independent predictors of lower Cts (i.e. higher viral load) included self-reported symptoms and more genes detected, with at most small effects of sex, ethnicity, and age. Single-gene positives almost invariably had Ct > 30, but Cts varied widely in triple-gene positives, including without symptoms. Population-level Cts changed over time, with declining Ct preceding increasing SARS-CoV-2 positivity. Of 6189 participants with IgG S-antibody tests post-first RT-PCR-positive, 4808 (78%) were ever antibody-positive; Cts were significantly higher in those remaining antibody negative. Conclusions: Marked variation in community SARS-CoV-2 Ct values suggests that they could be a useful epidemiological early-warning indicator. Funding: Department of Health and Social Care, National Institutes of Health Research, Huo Family Foundation, Medical Research Council UK; Wellcome Trust.


Subject(s)
COVID-19 Testing , COVID-19/virology , SARS-CoV-2 , Viral Load , Humans
19.
Nat Med ; 27(8): 1370-1378, 2021 08.
Article in English | MEDLINE | ID: covidwho-1263502

ABSTRACT

The effectiveness of COVID-19 vaccination in preventing new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general community is still unclear. Here, we used the Office for National Statistics COVID-19 Infection Survey-a large community-based survey of individuals living in randomly selected private households across the United Kingdom-to assess the effectiveness of the BNT162b2 (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca; ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30; as a surrogate for viral load) and gene positivity pattern (compatible with B.1.1.7 or not). Using 1,945,071 real-time PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021, we found that vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 d after the first dose (61% (95% confidence interval (CI) = 54-68%) versus 66% (95% CI = 60-71%), respectively), with greater reductions observed after a second dose (79% (95% CI = 65-88%) versus 80% (95% CI = 73-85%), respectively). The largest reductions were observed for symptomatic infections and/or infections with a higher viral burden. Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of a difference between the BNT162b2 and ChAdOx1 vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL