Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Fam Pract ; 39(6): 1049-1055, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2313927

ABSTRACT

BACKGROUND: Limited recent observational data have suggested that there may be a protective effect of oestrogen on the severity of COVID-19 disease. Our aim was to investigate the association between hormone replacement therapy (HRT) or combined oral contraceptive pill (COCP) use and the likelihood of death in women with COVID-19. METHODS: We undertook a retrospective cohort study using routinely collected computerized medical records from the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) primary care database. We identified a cohort of 1,863,478 women over 18 years of age from 465 general practices in England. Mixed-effects logistic regression models were used to quantify the association between HRT or COCP use and all-cause mortality among women diagnosed with confirmed or suspected COVID-19 in unadjusted and adjusted models. RESULTS: There were 5,451 COVID-19 cases within the cohort. HRT was associated with a reduction in all-cause mortality in COVID-19 (adjusted OR 0.22, 95% CI 0.05 to 0.94). There were no reported events for all-cause mortality in women prescribed COCPs. This prevented further examination of the impact of COCP. CONCLUSIONS: We found that HRT prescription within 6 months of a recorded diagnosis of COVID-19 infection was associated with a reduction in all-cause mortality. Further work is needed in larger cohorts to examine the association of COCP in COVID-19, and to further investigate the hypothesis that oestrogens may contribute a protective effect against COVID-19 severity.


Subject(s)
COVID-19 , Female , Humans , Adolescent , Adult , Contraceptives, Oral, Combined/therapeutic use , Retrospective Studies , Hormone Replacement Therapy , Cohort Studies
2.
Fam Pract ; 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2256173

ABSTRACT

BACKGROUND: Concerns have been raised that angiotensin-converting enzyme-inhibitors (ACE-I) and angiotensin receptor blockers (ARBs) might facilitate transmission of severe acute respiratory syndrome coronavirus 2 leading to more severe coronavirus disease (COVID-19) disease and an increased risk of mortality. We aimed to investigate the association between ACE-I/ARB treatment and risk of death amongst people with COVID-19 in the first 6 months of the pandemic. METHODS: We identified a cohort of adults diagnosed with either confirmed or probable COVID-19 (from 1 January to 21 June 2020) using computerized medical records from the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) primary care database. This comprised 465 general practices in England, United Kingdom with a nationally representative population of 3.7 million people. We constructed mixed-effects logistic regression models to quantify the association between ACE-I/ARBs and all-cause mortality among people with COVID-19, adjusted for sociodemographic factors, comorbidities, concurrent medication, smoking status, practice clustering, and household number. RESULTS: There were 9,586 COVID-19 cases in the sample and 1,463 (15.3%) died during the study period between 1 January 2020 and 21 June 2020. In adjusted analysis ACE-I and ARBs were not associated with all-cause mortality (adjusted odds ratio [OR] 1.02, 95% confidence interval [CI] 0.85-1.21 and OR 0.84, 95% CI 0.67-1.07, respectively). CONCLUSION: Use of ACE-I/ARB, which are commonly used drugs, did not alter the odds of all-cause mortality amongst people diagnosed with COVID-19. Our findings should inform patient and prescriber decisions concerning continued use of these medications during the pandemic.

3.
JMIR Public Health Surveill ; 8(8): e36989, 2022 08 11.
Article in English | MEDLINE | ID: covidwho-1993687

ABSTRACT

BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. OBJECTIVE: This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. METHODS: We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics-defined LC symptoms between groups. We used descriptive statistics and logistic regression. RESULTS: The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. CONCLUSIONS: Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19 Testing , Humans , Phenotype , Primary Health Care , Retrospective Studies , Post-Acute COVID-19 Syndrome
4.
JMIR Res Protoc ; 11(7): e34206, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1974488

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) are both considered to be part of standard care in the management of glycemia in type 2 diabetes. Recent trial evidence has indicated benefits on primary kidney end points for individual drugs within each medication class. Despite the potential benefits of combining SGLT2is and GLP-1RAs for glycemia management, according to national and international guideline recommendations, there is currently limited data on kidney end points for this drug combination. OBJECTIVE: The aims of the study are to assess the real-world effects of combination SGLT2i and GLP-1RA therapies for diabetes management on kidney end points, glycemic control, and weight in people with type 2 diabetes who are being treated with renin-angiotensin system blockade medication. METHODS: This retrospective cohort study will use the electronic health records of people with type 2 diabetes that are registered with general practices covering over 15 million people in England and Wales and are included in the Oxford-Royal College of General Practitioners Research and Surveillance Centre network. A propensity score-matched cohort of prevalent new users of SGLT2is and GLP-1RAs and those who have been prescribed SGLT2is and GLP-1RAs in combination will be identified. They will be matched based on drug histories, comorbidities, and demographics. A repeated-measures, multilevel, linear regression analysis will be performed to compare the mean change (from baseline) in estimated glomerular filtration rate at 12 and 24 months between those who switched to combined therapy and those continuing monotherapy with an SGLT2i or GLP-1RA. The secondary end points will be albuminuria, serum creatinine level, glycated hemoglobin level, and BMI. These will also be assessed for change at the 12- and 24-month follow-ups. RESULTS: The study is due to commence in March 2022 and is expected to be complete by September 2022. CONCLUSIONS: Our study will be the first to assess the impact of combination SGLT2i and GLP-1RA therapy in type 2 diabetes on primary kidney end points from a real-world perspective. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/34206.

5.
JMIR Res Protoc ; 11(4): e35971, 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1862509

ABSTRACT

BACKGROUND: Social distancing and other nonpharmaceutical interventions to reduce the spread of COVID-19 infection in the United Kingdom have led to substantial changes in delivering ongoing care for patients with chronic conditions, including type 2 diabetes mellitus (T2DM). Clinical guidelines for the management and prevention of complications for people with T2DM delivered in primary care services advise routine annual reviews and were developed when face-to-face consultations were the norm. The shift in consultations from face-to-face to remote consultations caused a reduction in direct clinical contact and may impact the process of care for people with T2DM. OBJECTIVE: The aim of this study is to explore the impact of the COVID-19 pandemic's first year on the monitoring of people with T2DM using routine annual reviews from a national primary care perspective in England. METHODS: A retrospective cohort study of adults with T2DM will be performed using routinely collected primary care data from the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC). We will describe the change in the rate of monitoring of hemoglobin A1c (HbA1c) between the first year of the COVID-19 pandemic (2020) and the preceding year (2019). We will also report any change in the eight checks that make up the components of these reviews. The change in HbA1c monitoring rates will be determined using a multilevel logistic regression model, adjusting for patient and practice characteristics, and similarly, the change in a composite measure of the completeness of all eight checks will be modeled using ordinal regression. The models will be adjusted for the following patient-level variables: age, gender, socioeconomic status, ethnicity, COVID-19 shielding status, duration of diabetes, and comorbidities. The model will also be adjusted for the following practice-level variables: urban versus rural, practice size, Quality and Outcomes Framework achievement, the National Health Service region, and the proportion of face-to-face consultations. Ethical approval was provided by the University of Oxford Medical Sciences Interdivisional Research Ethics Committee (September 2, 2021, reference R77306/RE001). RESULTS: The analysis of the data extract will include 3.96 million patients with T2DM across 700 practices, which is 6% of the available Oxford-RCGP RSC adult population. The preliminary results will be submitted to a conference under the domain of primary care. The resulting publication will be submitted to a peer-reviewed journal on diabetes and endocrinology. CONCLUSIONS: The COVID-19 pandemic has impacted the delivery of care, but little is known about the process of caring for people with T2DM. This study will report the impact of the COVID-19 pandemic on these processes of care. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35971.

7.
Hypertension ; 77(3): 846-855, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1083929

ABSTRACT

Hypertension has been identified as a risk factor for coronavirus disease 2019 (COVID-19) and associated adverse outcomes. This study examined the association between preinfection blood pressure (BP) control and COVID-19 outcomes using data from 460 general practices in England. Eligible patients were adults with hypertension who were tested or diagnosed with COVID-19. BP control was defined by the most recent BP reading within 24 months of the index date (January 1, 2020). BP was defined as controlled (<130/80 mm Hg), raised (130/80-139/89 mm Hg), stage 1 uncontrolled (140/90-159/99 mm Hg), or stage 2 uncontrolled (≥160/100 mm Hg). The primary outcome was death within 28 days of COVID-19 diagnosis. Secondary outcomes were COVID-19 diagnosis and COVID-19-related hospital admission. Multivariable logistic regression was used to examine the association between BP control and outcomes. Of the 45 418 patients (mean age, 67 years; 44.7% male) included, 11 950 (26.3%) had controlled BP. These patients were older, had more comorbidities, and had been diagnosed with hypertension for longer. A total of 4277 patients (9.4%) were diagnosed with COVID-19 and 877 died within 28 days. Individuals with stage 1 uncontrolled BP had lower odds of COVID-19 death (odds ratio, 0.76 [95% CI, 0.62-0.92]) compared with patients with well-controlled BP. There was no association between BP control and COVID-19 diagnosis or hospitalization. These findings suggest BP control may be associated with worse COVID-19 outcomes, possibly due to these patients having more advanced atherosclerosis and target organ damage. Such patients may need to consider adhering to stricter social distancing, to limit the impact of COVID-19 as future waves of the pandemic occur.


Subject(s)
Blood Pressure/drug effects , COVID-19/epidemiology , Hypertension/epidemiology , Pandemics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antihypertensive Agents/therapeutic use , Atherosclerosis/epidemiology , COVID-19/prevention & control , Comorbidity , England/epidemiology , Ethnicity/statistics & numerical data , Female , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Hypertension/drug therapy , Logistic Models , Male , Middle Aged , Odds Ratio , Primary Health Care/statistics & numerical data , Retrospective Studies , Risk Factors , Severity of Illness Index , Survival Analysis , Treatment Outcome
8.
JMIR Public Health Surveill ; 6(3): e19773, 2020 07 02.
Article in English | MEDLINE | ID: covidwho-791866

ABSTRACT

BACKGROUND: Routinely recorded primary care data have been used for many years by sentinel networks for surveillance. More recently, real world data have been used for a wider range of research projects to support rapid, inexpensive clinical trials. Because the partial national lockdown in the United Kingdom due to the coronavirus disease (COVID-19) pandemic has resulted in decreasing community disease incidence, much larger numbers of general practices are needed to deliver effective COVID-19 surveillance and contribute to in-pandemic clinical trials. OBJECTIVE: The aim of this protocol is to describe the rapid design and development of the Oxford Royal College of General Practitioners Clinical Informatics Digital Hub (ORCHID) and its first two platforms. The Surveillance Platform will provide extended primary care surveillance, while the Trials Platform is a streamlined clinical trials platform that will be integrated into routine primary care practice. METHODS: We will apply the FAIR (Findable, Accessible, Interoperable, and Reusable) metadata principles to a new, integrated digital health hub that will extract routinely collected general practice electronic health data for use in clinical trials and provide enhanced communicable disease surveillance. The hub will be findable through membership in Health Data Research UK and European metadata repositories. Accessibility through an online application system will provide access to study-ready data sets or developed custom data sets. Interoperability will be facilitated by fixed linkage to other key sources such as Hospital Episodes Statistics and the Office of National Statistics using pseudonymized data. All semantic descriptors (ie, ontologies) and code used for analysis will be made available to accelerate analyses. We will also make data available using common data models, starting with the US Food and Drug Administration Sentinel and Observational Medical Outcomes Partnership approaches, to facilitate international studies. The Surveillance Platform will provide access to data for health protection and promotion work as authorized through agreements between Oxford, the Royal College of General Practitioners, and Public Health England. All studies using the Trials Platform will go through appropriate ethical and other regulatory approval processes. RESULTS: The hub will be a bottom-up, professionally led network that will provide benefits for member practices, our health service, and the population served. Data will only be used for SQUIRE (surveillance, quality improvement, research, and education) purposes. We have already received positive responses from practices, and the number of practices in the network has doubled to over 1150 since February 2020. COVID-19 surveillance has resulted in tripling of the number of virology sites to 293 (target 300), which has aided the collection of the largest ever weekly total of surveillance swabs in the United Kingdom as well as over 3000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology samples. Practices are recruiting to the PRINCIPLE (Platform Randomised trial of INterventions against COVID-19 In older PeopLE) trial, and these participants will be followed up through ORCHID. These initial outputs demonstrate the feasibility of ORCHID to provide an extended national digital health hub. CONCLUSIONS: ORCHID will provide equitable and innovative use of big data through a professionally led national primary care network and the application of FAIR principles. The secure data hub will host routinely collected general practice data linked to other key health care repositories for clinical trials and support enhanced in situ surveillance without always requiring large volume data extracts. ORCHID will support rapid data extraction, analysis, and dissemination with the aim of improving future research and development in general practice to positively impact patient care. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19773.


Subject(s)
Clinical Trials as Topic , Coronavirus Infections/epidemiology , General Practice/organization & administration , Medical Records Systems, Computerized , Pneumonia, Viral/epidemiology , Public Health Surveillance , COVID-19 , Humans , Pandemics , Primary Health Care/organization & administration , Societies, Medical , United Kingdom/epidemiology
9.
Diabetes Obes Metab ; 22(10): 1892-1896, 2020 10.
Article in English | MEDLINE | ID: covidwho-751751

ABSTRACT

With the accumulation of observational data showing an association of metabolic co-morbidities with adverse outcomes from COVID-19, there is a need to disentangle the contributions of pre-existing macro- and microvascular disease, obesity and glycaemia. This article outlines the complex mechanistic and clinical interplay between diabetes and COVID-19, the clinical and research questions which arise from this relationship, and the types of studies needed to answer those questions. The authors are clinicians and academics working in diabetes and obesity medicine, but the article is pitched to an audience of generalists with clinical experience of or interest in the management of COVID-19.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Obesity/epidemiology , COVID-19/complications , COVID-19/pathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Comorbidity , Diabetes Complications/epidemiology , Diabetes Complications/pathology , Diabetes Mellitus/etiology , Diabetes Mellitus/pathology , Disease Progression , Ethnicity/statistics & numerical data , Glycemic Control/mortality , Glycemic Control/statistics & numerical data , Humans , Obesity/complications , Obesity/pathology , Pandemics , Prediabetic State/complications , Prediabetic State/epidemiology , Prediabetic State/pathology , Prevalence , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index
10.
Diabetes Res Clin Pract ; 164: 108217, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-245152

ABSTRACT

Increasing evidence points to endothelial cell dysfunction as a key pathophysiological factor in severe coronavirus disease-19 (COVID-19), manifested by platelet aggregation, microthrombi and altered vasomotor tone. This may be driven by direct endothelial cell entry by the virus, or indirectly by activated inflammatory cascade. Major risk groups identified for adverse outcomes in COVID-19 are diabetes, and those from the Black, Asian and ethnic minority (BAME) populations. Hyperglycaemia (expressed as glycated haemoglobin or mean hospital glucose) correlates with worse outcomes in COVID-19. It is not known whether hyperglycaemia is causative or is a surrogate marker - persistent hyperglycaemia is well known as an aetiological agent in microangiopathy. In this article, we propose that pre-existing endothelial dysfunction of microangiopathy, more commonly evident in diabetes and BAME groups, makes an individual vulnerable to the subsequent 'endothelitis' of COVID-19 infection.


Subject(s)
Coronavirus Infections/pathology , Diabetic Angiopathies/virology , Pneumonia, Viral/pathology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/therapy , Diabetic Angiopathies/pathology , Ethnicity , Humans , Hyperglycemia/pathology , Hyperglycemia/virology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , SARS-CoV-2
11.
JMIR Public Health Surveill ; 6(2): e18606, 2020 04 02.
Article in English | MEDLINE | ID: covidwho-31012

ABSTRACT

BACKGROUND: The Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) have successfully worked together on the surveillance of influenza and other infectious diseases for over 50 years, including three previous pandemics. With the emergence of the international outbreak of the coronavirus infection (COVID-19), a UK national approach to containment has been established to test people suspected of exposure to COVID-19. At the same time and separately, the RCGP RSC's surveillance has been extended to monitor the temporal and geographical distribution of COVID-19 infection in the community as well as assess the effectiveness of the containment strategy. OBJECTIVES: The aims of this study are to surveil COVID-19 in both asymptomatic populations and ambulatory cases with respiratory infections, ascertain both the rate and pattern of COVID-19 spread, and assess the effectiveness of the containment policy. METHODS: The RCGP RSC, a network of over 500 general practices in England, extract pseudonymized data weekly. This extended surveillance comprises of five components: (1) Recording in medical records of anyone suspected to have or who has been exposed to COVID-19. Computerized medical records suppliers have within a week of request created new codes to support this. (2) Extension of current virological surveillance and testing people with influenza-like illness or lower respiratory tract infections (LRTI)-with the caveat that people suspected to have or who have been exposed to COVID-19 should be referred to the national containment pathway and not seen in primary care. (3) Serology sample collection across all age groups. This will be an extra blood sample taken from people who are attending their general practice for a scheduled blood test. The 100 general practices currently undertaking annual influenza virology surveillance will be involved in the extended virological and serological surveillance. (4) Collecting convalescent serum samples. (5) Data curation. We have the opportunity to escalate the data extraction to twice weekly if needed. Swabs and sera will be analyzed in PHE reference laboratories. RESULTS: General practice clinical system providers have introduced an emergency new set of clinical codes to support COVID-19 surveillance. Additionally, practices participating in current virology surveillance are now taking samples for COVID-19 surveillance from low-risk patients presenting with LRTIs. Within the first 2 weeks of setup of this surveillance, we have identified 3 cases: 1 through the new coding system, the other 2 through the extended virology sampling. CONCLUSIONS: We have rapidly converted the established national RCGP RSC influenza surveillance system into one that can test the effectiveness of the COVID-19 containment policy. The extended surveillance has already seen the use of new codes with 3 cases reported. Rapid sharing of this protocol should enable scientific critique and shared learning. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/18606.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Disease Notification/methods , Medical Records Systems, Computerized , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Public Health Surveillance/methods , Betacoronavirus , COVID-19 , Disease Outbreaks , England/epidemiology , Female , Humans , Male , Public Health , SARS-CoV-2 , Sentinel Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL