Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Journal of Data Science ; 18(3):409-432, 2020.
Article in English | Airiti Library | ID: covidwho-918465

ABSTRACT

We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level 'macro' isolation policies and community-level 'micro' social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360479

ABSTRACT

Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 205 COVID-19 patients and controls to create a comprehensive immune landscape. Lymphopenia and active T and B cell responses were found to coexist and associated with age, sex and their interactions with COVID-19. Diverse epithelial and immune cell types were observed to be virus-positive and showed dramatic transcriptomic changes. Elevation of ANXA1 and S100A9 in virus-positive squamous epithelial cells may enable the initiation of neutrophil and macrophage responses via the ANXA1-FPR1 and S100A8/9-TLR4 axes. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and designing effective therapeutic strategies for COVID-19.


Subject(s)
Lymphopenia , Carcinoma, Squamous Cell , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL