Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Infect Dis ; 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1973171

ABSTRACT

To inform public health policy, it is critical to monitor COVID-19 vaccine effectiveness (VE), including against acquiring infection. We estimated VE using self-reported vaccination in a retrospective cohort of repeat blood donors who donated during the first half of 2021, demonstrating a viable approach for monitoring of VE via serological surveillance. Using Poisson regression, we estimated an overall VE of 88.8% (95% CI: 86.2-91.1), adjusted for demographic covariates and variable baseline risk. Time since first reporting vaccination, age, race-ethnicity, region, and calendar time were statistically significant predictors of incident infection.

2.
Pediatrics ; 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1910743

ABSTRACT

OBJECTIVE: To evaluate risk factors for post-discharge sequelae in children and adolescents after hospitalization for acute COVID-19 or multisystem inflammatory syndrome in children (MIS-C). METHODS: Multicenter prospective observational cohort study conducted in 25 US pediatric hospitals. Patients <21-years-old, hospitalized May 2020 to May 2021 for acute COVID-19 or MIS-C with follow-up 2-4 months after admission. We assessed readmissions, caregiver-reported persistent symptoms or activity impairment, and new morbidities identified by the Functional Status Scale. Multivariable regression was used to calculate adjusted risk ratios (aRR). RESULTS: Of 358 eligible patients, 2-4 month survey data were available for 119/155 (76.8%) with acute COVID-19 and 160/203 (78.8%) with MIS-C. Thirteen (11%) patients with acute COVID-19 and 12 (8%) with MIS-C had a readmission. Thirty-two (26.9%) patients with acute COVID-19 had persistent symptoms (22.7%) or activity impairment (14.3%) and 48 (30.0%) patients with MIS-C had persistent symptoms (20.0%) or activity impairment (21.3%). For patients with acute COVID-19, persistent symptoms (aRR, 1.29[95% CI, 1.04-1.59]) and activity impairment (aRR, 1.37[95% CI, 1.06-1.78]) were associated with more organs systems involved. Patients with MIS-C and pre-existing respiratory conditions more frequently had persistent symptoms (aRR, 3.09[95% CI, 1.55-6.14]) and those with obesity more frequently had activity impairment (aRR, 2.52[95% CI, 1.35-4.69]). New morbidities were infrequent (9% COVID-19 and 1% MIS-C). CONCLUSIONS: Over one in four children hospitalized with acute COVID-19 or MIS-C experienced persistent symptoms or activity impairment for at least 2 months. Patients with MIS-C and respiratory conditions or obesity are at higher risk of prolonged recovery.

3.
MMWR Morb Mortal Wkly Rep ; 71(15): 549-555, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1789732

ABSTRACT

Previous infection with SARS-CoV-2, the virus that causes COVID-19, has been estimated to confer up to 90% protection against reinfection, although this protection was lower against the Omicron variant compared with that against other SARS-CoV-2 variants (1-3). A test-negative design was used to estimate effectiveness of COVID-19 mRNA vaccines in preventing subsequent COVID-19-associated hospitalization among adults aged ≥18 years with a previous positive nucleic acid amplification test (NAAT) or diagnosis of COVID-19.† The analysis used data from Cosmos, an electronic health record (EHR)-aggregated data set (4), and compared vaccination status of 3,761 case-patients (positive NAAT result associated with hospitalization) with 7,522 matched control-patients (negative NAAT result). After previous SARS-CoV-2 infection, estimated vaccine effectiveness (VE) against COVID-19-associated hospitalization was 47.5% (95% CI = 38.8%-54.9%) after 2 vaccine doses and 57.8% (95% CI = 32.1%-73.8%) after a booster dose during the Delta-predominant period (June 20-December 18, 2021), and 34.6% (95% CI = 25.5%-42.5%) after 2 doses and 67.6% (95% CI = 61.4%-72.8%) after a booster dose during the Omicron-predominant period (December 19, 2021-February 24, 2022). Vaccination provides protection against COVID-19-associated hospitalization among adults with previous SARS-CoV-2 infection, with the highest level of protection conferred by a booster dose. All eligible persons, including those with previous SARS-CoV-2 infection, should stay up to date with vaccination to prevent COVID-19-associated hospitalization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization , Humans , RNA, Messenger , United States/epidemiology , Vaccination
4.
J Pediatric Infect Dis Soc ; 11(5): 191-198, 2022 May 30.
Article in English | MEDLINE | ID: covidwho-1621636

ABSTRACT

BACKGROUND: It is unclear how acute coronavirus disease 2019 (COVID-19)-directed therapies are used in children with life-threatening COVID-19 in US hospitals. We described characteristics of children hospitalized in the intensive care unit or step-down unit (ICU/SDU) who received COVID-19-directed therapies and the specific therapies administered. METHODS: Between March 15, 2020 and December 27, 2020, children <18 years of age in the ICU/SDU with acute COVID-19 at 48 pediatric hospitals in the United States were identified. Demographics, laboratory values, and clinical course were compared in children who did and did not receive COVID-19-directed therapies. Trends in COVID-19-directed therapies over time were evaluated. RESULTS: Of 424 children in the ICU/SDU, 235 (55%) received COVID-19-directed therapies. Children who received COVID-19-directed therapies were older than those who did not receive COVID-19-directed therapies (13.3 [5.6-16.2] vs 9.8 [0.65-15.9] years), more had underlying medical conditions (188 [80%] vs 104 [55%]; difference = 25% [95% CI: 16% to 34%]), more received respiratory support (206 [88%] vs 71 [38%]; difference = 50% [95% CI: 34% to 56%]), and more died (8 [3.4%] vs 0). Of the 235 children receiving COVID-19-directed therapies, 172 (73%) received systemic steroids and 150 (64%) received remdesivir, with rising remdesivir use over the study period (14% in March/April to 57% November/December). CONCLUSION: Despite the lack of pediatric data evaluating treatments for COVID-19 in critically ill children, more than half of children requiring intensive or high acuity care received COVID-19-directed therapies.


Subject(s)
COVID-19 , COVID-19/drug therapy , Child , Critical Illness , Hospitalization , Hospitals, Pediatric , Humans , Intensive Care Units , United States
5.
Clin Infect Dis ; 73(8): 1459-1468, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1490480

ABSTRACT

BACKGROUND: Influenza vaccine effectiveness (VE) against a spectrum of severe disease, including critical illness and death, remains poorly characterized. METHODS: We conducted a test-negative study in an intensive care unit (ICU) network at 10 US hospitals to evaluate VE for preventing influenza-associated severe acute respiratory infection (SARI) during the 2019-2020 season, which was characterized by circulation of drifted A/H1N1 and B-lineage viruses. Cases were adults hospitalized in the ICU and a targeted number outside the ICU (to capture a spectrum of severity) with laboratory-confirmed, influenza-associated SARI. Test-negative controls were frequency-matched based on hospital, timing of admission, and care location (ICU vs non-ICU). Estimates were adjusted for age, comorbidities, and other confounders. RESULTS: Among 638 patients, the median (interquartile) age was 57 (44-68) years; 286 (44.8%) patients were treated in the ICU and 42 (6.6%) died during hospitalization. Forty-five percent of cases and 61% of controls were vaccinated, which resulted in an overall VE of 32% (95% CI: 2-53%), including 28% (-9% to 52%) against influenza A and 52% (13-74%) against influenza B. VE was higher in adults 18-49 years old (62%; 95% CI: 27-81%) than those aged 50-64 years (20%; -48% to 57%) and ≥65 years old (-3%; 95% CI: -97% to 46%) (P = .0789 for interaction). VE was significantly higher against influenza-associated death (80%; 95% CI: 4-96%) than nonfatal influenza illness. CONCLUSIONS: During a season with drifted viruses, vaccination reduced severe influenza-associated illness among adults by 32%. VE was high among young adults.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Aged , Case-Control Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Middle Aged , Seasons , United States/epidemiology , Vaccination , Young Adult
6.
MMWR Morb Mortal Wkly Rep ; 69(47): 1762-1766, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-1389859

ABSTRACT

Most persons infected with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), develop virus-specific antibodies within several weeks, but antibody titers might decline over time. Understanding the timeline of antibody decline is important for interpreting SARS-CoV-2 serology results. Serum specimens were collected from a convenience sample of frontline health care personnel at 13 hospitals and tested for antibodies to SARS-CoV-2 during April 3-June 19, 2020, and again approximately 60 days later to assess this timeline. The percentage of participants who experienced seroreversion, defined as an antibody signal-to-threshold ratio >1.0 at baseline and <1.0 at the follow-up visit, was assessed. Overall, 194 (6.0%) of 3,248 participants had detectable antibodies to SARS-CoV-2 at baseline (1). Upon repeat testing approximately 60 days later (range = 50-91 days), 146 (93.6%) of 156 participants experienced a decline in antibody response indicated by a lower signal-to-threshold ratio at the follow-up visit, compared with the baseline visit, and 44 (28.2%) experienced seroreversion. Participants with higher initial antibody responses were more likely to have antibodies detected at the follow-up test than were those who had a lower initial antibody response. Whether decay in these antibodies increases risk for reinfection and disease remains unanswered. However, these results suggest that serology testing at a single time point is likely to underestimate the number of persons with previous SARS-CoV-2 infection, and a negative serologic test result might not reliably exclude prior infection.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/immunology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
7.
MMWR Morb Mortal Wkly Rep ; 69(35): 1221-1226, 2020 Sep 04.
Article in English | MEDLINE | ID: covidwho-1389852

ABSTRACT

Health care personnel (HCP) caring for patients with coronavirus disease 2019 (COVID-19) might be at high risk for contracting SARS-CoV-2, the virus that causes COVID-19. Understanding the prevalence of and factors associated with SARS-CoV-2 infection among frontline HCP who care for COVID-19 patients are important for protecting both HCP and their patients. During April 3-June 19, 2020, serum specimens were collected from a convenience sample of frontline HCP who worked with COVID-19 patients at 13 geographically diverse academic medical centers in the United States, and specimens were tested for antibodies to SARS-CoV-2. Participants were asked about potential symptoms of COVID-19 experienced since February 1, 2020, previous testing for acute SARS-CoV-2 infection, and their use of personal protective equipment (PPE) in the past week. Among 3,248 participants, 194 (6.0%) had positive test results for SARS-CoV-2 antibodies. Seroprevalence by hospital ranged from 0.8% to 31.2% (median = 3.6%). Among the 194 seropositive participants, 56 (29%) reported no symptoms since February 1, 2020, 86 (44%) did not believe that they previously had COVID-19, and 133 (69%) did not report a previous COVID-19 diagnosis. Seroprevalence was lower among personnel who reported always wearing a face covering (defined in this study as a surgical mask, N95 respirator, or powered air purifying respirator [PAPR]) while caring for patients (5.6%), compared with that among those who did not (9.0%) (p = 0.012). Consistent with persons in the general population with SARS-CoV-2 infection, many frontline HCP with SARS-CoV-2 infection might be asymptomatic or minimally symptomatic during infection, and infection might be unrecognized. Enhanced screening, including frequent testing of frontline HCP, and universal use of face coverings in hospitals are two strategies that could reduce SARS-CoV-2 transmission.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/epidemiology , Academic Medical Centers , Adult , Asymptomatic Diseases , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Cross Infection/prevention & control , Female , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Male , Middle Aged , Pandemics/prevention & control , Personal Protective Equipment/statistics & numerical data , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiology
8.
EClinicalMedicine ; 40: 101112, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1377702

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients. FINDINGS: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients. INTERPRETATION: Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.

9.
Vaccine ; 39(37): 5271-5276, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1371544

ABSTRACT

INTRODUCTION: Understanding patient factors associated with not being vaccinated is essential for successful implementation of influenza vaccination programs. METHODS: We enrolled adults hospitalized with severe acute respiratory illness at 10 United States (US) hospitals during the 2019-2020 influenza season. We interviewed patients to collect data about influenza vaccination, sociodemographic characteristics, and vaccine perceptions. RESULTS: Among 679 participants, 264 (38.9%) reported not receiving influenza vaccination. Among those not vaccinated, 135 (51.1%) reported choosing not to receive a vaccine because of perceived ineffectiveness (36.7%) or risk (14.4%) of influenza vaccination. Sociodemographic factors associated with not being vaccinated included no medical insurance (aOR = 6.42; 95% CI: 2.52-16.38) and being non-White or Hispanic (aOR = 1.54, 95% CI: 1.02-2.32). CONCLUSIONS: Optimizing uptake of influenza vaccination in the US may be improved by educational programs regarding vaccine safety and effectiveness and enhancing vaccine access, particularly among non-White and Hispanic Americans and those without medical insurance.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Humans , Influenza, Human/prevention & control , United States , Vaccination
10.
N Engl J Med ; 385(1): 23-34, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1270704

ABSTRACT

BACKGROUND: The assessment of real-world effectiveness of immunomodulatory medications for multisystem inflammatory syndrome in children (MIS-C) may guide therapy. METHODS: We analyzed surveillance data on inpatients younger than 21 years of age who had MIS-C and were admitted to 1 of 58 U.S. hospitals between March 15 and October 31, 2020. The effectiveness of initial immunomodulatory therapy (day 0, indicating the first day any such therapy for MIS-C was given) with intravenous immune globulin (IVIG) plus glucocorticoids, as compared with IVIG alone, was evaluated with propensity-score matching and inverse probability weighting, with adjustment for baseline MIS-C severity and demographic characteristics. The primary outcome was cardiovascular dysfunction (a composite of left ventricular dysfunction or shock resulting in the use of vasopressors) on or after day 2. Secondary outcomes included the components of the primary outcome, the receipt of adjunctive treatment (glucocorticoids in patients not already receiving glucocorticoids on day 0, a biologic, or a second dose of IVIG) on or after day 1, and persistent or recurrent fever on or after day 2. RESULTS: A total of 518 patients with MIS-C (median age, 8.7 years) received at least one immunomodulatory therapy; 75% had been previously healthy, and 9 died. In the propensity-score-matched analysis, initial treatment with IVIG plus glucocorticoids (103 patients) was associated with a lower risk of cardiovascular dysfunction on or after day 2 than IVIG alone (103 patients) (17% vs. 31%; risk ratio, 0.56; 95% confidence interval [CI], 0.34 to 0.94). The risks of the components of the composite outcome were also lower among those who received IVIG plus glucocorticoids: left ventricular dysfunction occurred in 8% and 17% of the patients, respectively (risk ratio, 0.46; 95% CI, 0.19 to 1.15), and shock resulting in vasopressor use in 13% and 24% (risk ratio, 0.54; 95% CI, 0.29 to 1.00). The use of adjunctive therapy was lower among patients who received IVIG plus glucocorticoids than among those who received IVIG alone (34% vs. 70%; risk ratio, 0.49; 95% CI, 0.36 to 0.65), but the risk of fever was unaffected (31% and 40%, respectively; risk ratio, 0.78; 95% CI, 0.53 to 1.13). The inverse-probability-weighted analysis confirmed the results of the propensity-score-matched analysis. CONCLUSIONS: Among children and adolescents with MIS-C, initial treatment with IVIG plus glucocorticoids was associated with a lower risk of new or persistent cardiovascular dysfunction than IVIG alone. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19/drug therapy , Glucocorticoids/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Systemic Inflammatory Response Syndrome/drug therapy , Ventricular Dysfunction, Left/prevention & control , Adolescent , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , Child , Child, Preschool , Cohort Studies , Combined Modality Therapy , Drug Therapy, Combination , Female , Hospitalization , Humans , Immunomodulation , Infant , Logistic Models , Male , Propensity Score , Public Health Surveillance , Shock/etiology , Shock/prevention & control , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/mortality , Treatment Outcome , Ventricular Dysfunction, Left/etiology , Young Adult
11.
JAMA Netw Open ; 4(6): e2116420, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1263038

ABSTRACT

Importance: Multisystem inflammatory syndrome in children (MIS-C) is associated with recent or current SARS-CoV-2 infection. Information on MIS-C incidence is limited. Objective: To estimate population-based MIS-C incidence per 1 000 000 person-months and to estimate MIS-C incidence per 1 000 000 SARS-CoV-2 infections in persons younger than 21 years. Design, Setting, and Participants: This cohort study used enhanced surveillance data to identify persons with MIS-C during April to June 2020, in 7 jurisdictions reporting to both the Centers for Disease Control and Prevention national surveillance and to Overcoming COVID-19, a multicenter MIS-C study. Denominators for population-based estimates were derived from census estimates; denominators for incidence per 1 000 000 SARS-CoV-2 infections were estimated by applying published age- and month-specific multipliers accounting for underdetection of reported COVID-19 case counts. Jurisdictions included Connecticut, Georgia, Massachusetts, Michigan, New Jersey, New York (excluding New York City), and Pennsylvania. Data analyses were conducted from August to December 2020. Exposures: Race/ethnicity, sex, and age group (ie, ≤5, 6-10, 11-15, and 16-20 years). Main Outcomes and Measures: Overall and stratum-specific adjusted estimated MIS-C incidence per 1 000 000 person-months and per 1 000 000 SARS-CoV-2 infections. Results: In the 7 jurisdictions examined, 248 persons with MIS-C were reported (median [interquartile range] age, 8 [4-13] years; 133 [53.6%] male; 96 persons [38.7%] were Hispanic or Latino; 75 persons [30.2%] were Black). The incidence of MIS-C per 1 000 000 person-months was 5.1 (95% CI, 4.5-5.8) persons. Compared with White persons, incidence per 1 000 000 person-months was higher among Black persons (adjusted incidence rate ratio [aIRR], 9.26 [95% CI, 6.15-13.93]), Hispanic or Latino persons (aIRR, 8.92 [95% CI, 6.00-13.26]), and Asian or Pacific Islander (aIRR, 2.94 [95% CI, 1.49-5.82]) persons. MIS-C incidence per 1 000 000 SARS-CoV-2 infections was 316 (95% CI, 278-357) persons and was higher among Black (aIRR, 5.62 [95% CI, 3.68-8.60]), Hispanic or Latino (aIRR, 4.26 [95% CI, 2.85-6.38]), and Asian or Pacific Islander persons (aIRR, 2.88 [95% CI, 1.42-5.83]) compared with White persons. For both analyses, incidence was highest among children aged 5 years or younger (4.9 [95% CI, 3.7-6.6] children per 1 000 000 person-months) and children aged 6 to 10 years (6.3 [95% CI, 4.8-8.3] children per 1 000 000 person-months). Conclusions and Relevance: In this cohort study, MIS-C was a rare complication associated with SARS-CoV-2 infection. Estimates for population-based incidence and incidence among persons with infection were higher among Black, Hispanic or Latino, and Asian or Pacific Islander persons. Further study is needed to understand variability by race/ethnicity and age group.


Subject(s)
COVID-19/epidemiology , Systemic Inflammatory Response Syndrome/epidemiology , Adolescent , Age Distribution , Child , Child, Preschool , Cohort Studies , Female , Humans , Incidence , Male , SARS-CoV-2 , United States/epidemiology , Young Adult
12.
N Engl J Med ; 383(4): 334-346, 2020 07 23.
Article in English | MEDLINE | ID: covidwho-1254114

ABSTRACT

BACKGROUND: Understanding the epidemiology and clinical course of multisystem inflammatory syndrome in children (MIS-C) and its temporal association with coronavirus disease 2019 (Covid-19) is important, given the clinical and public health implications of the syndrome. METHODS: We conducted targeted surveillance for MIS-C from March 15 to May 20, 2020, in pediatric health centers across the United States. The case definition included six criteria: serious illness leading to hospitalization, an age of less than 21 years, fever that lasted for at least 24 hours, laboratory evidence of inflammation, multisystem organ involvement, and evidence of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on reverse-transcriptase polymerase chain reaction (RT-PCR), antibody testing, or exposure to persons with Covid-19 in the past month. Clinicians abstracted the data onto standardized forms. RESULTS: We report on 186 patients with MIS-C in 26 states. The median age was 8.3 years, 115 patients (62%) were male, 135 (73%) had previously been healthy, 131 (70%) were positive for SARS-CoV-2 by RT-PCR or antibody testing, and 164 (88%) were hospitalized after April 16, 2020. Organ-system involvement included the gastrointestinal system in 171 patients (92%), cardiovascular in 149 (80%), hematologic in 142 (76%), mucocutaneous in 137 (74%), and respiratory in 131 (70%). The median duration of hospitalization was 7 days (interquartile range, 4 to 10); 148 patients (80%) received intensive care, 37 (20%) received mechanical ventilation, 90 (48%) received vasoactive support, and 4 (2%) died. Coronary-artery aneurysms (z scores ≥2.5) were documented in 15 patients (8%), and Kawasaki's disease-like features were documented in 74 (40%). Most patients (171 [92%]) had elevations in at least four biomarkers indicating inflammation. The use of immunomodulating therapies was common: intravenous immune globulin was used in 144 (77%), glucocorticoids in 91 (49%), and interleukin-6 or 1RA inhibitors in 38 (20%). CONCLUSIONS: Multisystem inflammatory syndrome in children associated with SARS-CoV-2 led to serious and life-threatening illness in previously healthy children and adolescents. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
Coronavirus Infections/complications , Pneumonia, Viral/complications , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/virology , Adolescent , Betacoronavirus , COVID-19 , Centers for Disease Control and Prevention, U.S. , Child , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Critical Care , Female , Glucocorticoids/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunomodulation , Inflammation , Length of Stay , Male , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/therapy , Mucocutaneous Lymph Node Syndrome/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Prospective Studies , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/therapy , United States
13.
JAMA ; 325(11): 1074-1087, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1168763

ABSTRACT

Importance: Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. Objective: To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). Setting, Design, and Participants: Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase-polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. Exposure: SARS-CoV-2. Main Outcomes and Measures: Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. Results: Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI, 2.55-3.50] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7, P < .001), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L; P < .001), and lower platelet count (<150 ×103 cells/µL [212/523 {41%} vs 84/486 {17%}, P < .001]). A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization. Among patients with MIS-C with reduced left ventricular systolic function (172/503, 34.2%) and coronary artery aneurysm (57/424, 13.4%), an estimated 91.0% (95% CI, 86.0%-94.7%) and 79.1% (95% CI, 67.1%-89.1%), respectively, normalized within 30 days. Conclusions and Relevance: This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-19.


Subject(s)
COVID-19 , Systemic Inflammatory Response Syndrome , Adolescent , Age Factors , Biomarkers/analysis , COVID-19/complications , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Intensive Care Units, Pediatric , Male , Patient Acuity , Regression Analysis , Stroke Volume , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/physiopathology , Systemic Inflammatory Response Syndrome/therapy , United States , Young Adult
14.
Crit Care Explor ; 3(3): e0361, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1158026

ABSTRACT

OBJECTIVES: Given finite ICU bed capacity, knowledge of ICU bed utilization during the coronavirus disease 2019 pandemic is critical to ensure future strategies for resource allocation and utilization. We sought to examine ICU census trends in relation to ICU bed capacity during the rapid increase in severe coronavirus disease 2019 cases early during the pandemic. DESIGN: Observational cohort study. SETTING: Thirteen geographically dispersed academic medical centers in the United States. PATIENTS/SUBJECTS: We obtained daily ICU censuses from March 26 to June 30, 2020, as well as prepandemic ICU bed capacities. The primary outcome was daily census of ICU patients stratified by coronavirus disease 2019 and mechanical ventilation status in relation to ICU capacity. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Prepandemic overall ICU capacity ranged from 62 to 225 beds (median 109). During the study period, the median daily coronavirus disease 2019 ICU census per hospital ranged from 1 to 84 patients, and the daily ICU census exceeded overall ICU capacity for at least 1 day at five institutions. The number of critically ill patients exceeded ICU capacity for a median (interquartile range) of 17 (12-50) of 97 days at these five sites. All 13 institutions experienced decreases in their noncoronavirus disease ICU population, whereas local coronavirus disease 2019 cases increased. Coronavirus disease 2019 patients reached their greatest proportion of ICU capacity on April 12, 2020, when they accounted for 44% of ICU patients across all participating hospitals. Maximum ICU census ranged from 52% to 289% of overall ICU capacity, with three sites less than 80%, four sites 80-100%, five sites 100-128%, and one site 289%. CONCLUSIONS: From March to June 2020, the coronavirus disease 2019 pandemic led to ICU censuses greater than ICU bed capacity at fives of 13 institutions evaluated. These findings demonstrate the short-term adaptability of U.S. healthcare institutions in redirecting limited resources to accommodate a public health emergency.

15.
Crit Care Explor ; 3(3): e0354, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1158025

ABSTRACT

OBJECTIVES: Determine if thromboelastography parameters and platelet count on the day of ICU admission are associated with the development of venous thromboembolism in patients with coronavirus disease 2019. DESIGN: Prospective, observational cohort study. SETTING: Tertiary-care, academic medical center in Nashville, TN. PATIENTS: Patients with coronavirus disease 2019 pneumonia and acute respiratory failure admitted to the adult ICU without venous thromboembolism at the time of ICU admission. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: The primary outcome was development of venous thromboembolism during the index hospitalization. Venous thromboembolism was defined by clinical imaging or autopsy, demonstrating deep vein thrombosis or pulmonary embolism. Forty consecutive critically ill adults with laboratory-confirmed coronavirus disease 2019 were enrolled; 37 (92.5%) were hypercoagulable by at least one thromboelastography parameter at the time of ICU admission and 12 (30%) met the primary outcome of venous thromboembolism during the index hospitalization. Patients who developed venous thromboembolism had decreased measures of clotting (maximum amplitude, alpha angle, shear elastic modulus parameter, and clotting index) on ICU admission thromboelastography compared with patients who did not develop venous thromboembolism (p < 0.05 for all measures). For each individual thromboelastography parameter used to dichotomize patients as hypercoagulable, the rate of venous thromboembolism was not higher in those identified as hypercoagulable; in fact, the venous thromboembolism rate was higher in patients who were not hypercoagulable by thromboelastography for maximum amplitude (p = 0.04) and alpha angle (p = 0.001). Platelet count was positively correlated with maximum amplitude, alpha angle, G parameter, and clotting index, and significantly lower in patients who developed venous thromboembolism than those who did not (median 186 vs 278 103/µL, p = 0.046). Venous thromboembolism was associated with inhospital mortality (odds ratio, 6.3; 95% CI, 1.4-29; p = 0.02). CONCLUSIONS: Our data do not support the use of thromboelastography to risk stratify critically ill adults with coronavirus disease 2019 for the development of venous thromboembolism or to guide decisions about anticoagulation. Lower platelet count on ICU admission, which may reflect platelet aggregation, was associated with venous thromboembolism.

16.
JAMA Neurol ; 78(5): 536-547, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1118065

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. Objective: To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. Setting, Design, and Participants: Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features. Exposures: Severe acute respiratory syndrome coronavirus 2. Main Outcomes and Measures: Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. Results: Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 µg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19-related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. Conclusions and Relevance: In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Systemic Inflammatory Response Syndrome/etiology , Adolescent , COVID-19/etiology , COVID-19/mortality , Child , Child, Preschool , Critical Care , Female , Hospitalization , Humans , Male , Nervous System Diseases/mortality , Patient Discharge/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Systemic Inflammatory Response Syndrome/complications , Treatment Outcome , United States/epidemiology
17.
Influenza Other Respir Viruses ; 15(3): 345-351, 2021 05.
Article in English | MEDLINE | ID: covidwho-1010931

ABSTRACT

BACKGROUND: Symptoms of mild COVID-19 illness are non-specific and may persist for prolonged periods. Effects on quality of life of persistent poor physical or mental health associated with COVID-19 are not well understood. METHODS: Adults aged ≥18 years with laboratory-confirmed COVID-19 and matched control patients who tested negative for SARS-CoV-2 infection at outpatient facilities associated with 11 medical centers in the United States were interviewed to assess symptoms, illness duration, and health-related quality of life. Duration of symptoms, health-related quality of life measures, and days of poor physical health by symptoms experienced during illness were compared between case patients and controls using Wilcoxon rank-sum tests. Symptoms associated with COVID-19 case status were evaluated by multivariable logistic regression. RESULTS: Among 320 participants included, 157 were COVID-19 cases and 163 were SARS-CoV-2 negative controls. Loss of taste or smell was reported by 63% of cases and 6% of controls and was strongly associated with COVID-19 in logistic regression models (adjusted odds ratio [aOR] = 32.4; 95% confidence interval [CI], 12.6-83.1). COVID-19 cases were more likely than controls to have experienced fever, body aches, weakness, or fatigue during illness, and to report ≥1 persistent symptom more than 14 days after symptom onset (50% vs 32%, P < .001). Cases reported significantly more days of poor physical health during the past 14 days than controls (P < .01). CONCLUSIONS: Differentiating COVID-19 from other acute illnesses will require widespread diagnostic testing, especially during influenza seasons. Persistent COVID-19-related symptoms may negatively affect quality of life, even among those initially presenting with mild illness.


Subject(s)
COVID-19/psychology , Quality of Life , SARS-CoV-2 , Adult , Case-Control Studies , Female , Health Facilities , Humans , Logistic Models , Male , Middle Aged , Outpatients
18.
MMWR Morb Mortal Wkly Rep ; 69(44): 1648-1653, 2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-914858

ABSTRACT

Since March 2020, large-scale efforts to reduce transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), have continued. Mitigation measures to reduce workplace exposures have included work site policies to support flexible work site options, including telework, whereby employees work remotely without commuting to a central place of work.* Opportunities to telework have varied across industries among U.S. jobs where telework options are feasible (1). However, little is known about the impact of telework on risk for SARS-CoV-2 infection. A case-control investigation was conducted to compare telework between eligible symptomatic persons who received positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test results (case-patients, 153) and symptomatic persons with negative test results (control-participants, 161). Eligible participants were identified in outpatient health care facilities during July 2020. Among employed participants who reported on their telework status during the 2 weeks preceding illness onset (248), the percentage who were able to telework on a full- or part-time basis was lower among case-patients (35%; 42 of 120) than among control-participants (53%; 68 of 128) (p<0.01). Case-patients were more likely than were control-participants to have reported going exclusively to an office or school setting (adjusted odds ratio [aOR] = 1.8; 95% confidence interval [CI] = 1.2-2.7) in the 2 weeks before illness onset. The association was also observed when further restricting to the 175 participants who reported working in a profession outside the critical infrastructure† (aOR = 2.1; 95% CI = 1.3-3.6). Providing the option to work from home or telework when possible, is an important consideration for reducing the risk for SARS-CoV-2 infection. In industries where telework options are not available, worker safety measures should continue to be scaled up to reduce possible worksite exposures.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Symptom Assessment , Telecommunications/statistics & numerical data , Work/statistics & numerical data , Adolescent , Adult , Ambulatory Care Facilities , COVID-19 , Case-Control Studies , Female , Humans , Male , Middle Aged , Pandemics , United States/epidemiology , Young Adult
20.
MMWR Morb Mortal Wkly Rep ; 69(36): 1258-1264, 2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-761178

ABSTRACT

Community and close contact exposures continue to drive the coronavirus disease 2019 (COVID-19) pandemic. CDC and other public health authorities recommend community mitigation strategies to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1,2). Characterization of community exposures can be difficult to assess when widespread transmission is occurring, especially from asymptomatic persons within inherently interconnected communities. Potential exposures, such as close contact with a person with confirmed COVID-19, have primarily been assessed among COVID-19 cases, without a non-COVID-19 comparison group (3,4). To assess community and close contact exposures associated with COVID-19, exposures reported by case-patients (154) were compared with exposures reported by control-participants (160). Case-patients were symptomatic adults (persons aged ≥18 years) with SARS-CoV-2 infection confirmed by reverse transcription-polymerase chain reaction (RT-PCR) testing. Control-participants were symptomatic outpatient adults from the same health care facilities who had negative SARS-CoV-2 test results. Close contact with a person with known COVID-19 was more commonly reported among case-patients (42%) than among control-participants (14%). Case-patients were more likely to have reported dining at a restaurant (any area designated by the restaurant, including indoor, patio, and outdoor seating) in the 2 weeks preceding illness onset than were control-participants (adjusted odds ratio [aOR] = 2.4; 95% confidence interval [CI] = 1.5-3.8). Restricting the analysis to participants without known close contact with a person with confirmed COVID-19, case-patients were more likely to report dining at a restaurant (aOR = 2.8, 95% CI = 1.9-4.3) or going to a bar/coffee shop (aOR = 3.9, 95% CI = 1.5-10.1) than were control-participants. Exposures and activities where mask use and social distancing are difficult to maintain, including going to places that offer on-site eating or drinking, might be important risk factors for acquiring COVID-19. As communities reopen, efforts to reduce possible exposures at locations that offer on-site eating and drinking options should be considered to protect customers, employees, and communities.


Subject(s)
Community-Acquired Infections/epidemiology , Contact Tracing , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Environmental Exposure/adverse effects , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Ambulatory Care Facilities , COVID-19 , Environmental Exposure/statistics & numerical data , Female , Humans , Male , Middle Aged , Pandemics , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL