Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
iScience ; 25(1): 103589, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1882120

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent causing the COVID-19 pandemic. SARS-CoV-2 B.1.1.7 (Alpha), a WHO variant of concern first identified in the United Kingdom in late 2020, contains several mutations including P681H in the spike S1/S2 cleavage site, which is predicted to increase cleavage by furin, potentially impacting the viral cell entry. Here, we studied the role of the P681H mutation in B.1.1.7 cell entry. We performed assays using fluorogenic peptides mimicking the Wuhan-Hu-1 and B.1.1.7 S1/S2 sequence and observed no significant difference in furin cleavage. Functional assays using pseudoparticles harboring SARS-CoV-2 spikes and cell-to-cell fusion assays demonstrated no differences between Wuhan-Hu-1, B.1.1.7, or a P681H point mutant. Likewise, we observed no differences in viral growth between USA-WA1/2020 and a B.1.1.7 isolate in cell culture. Our findings suggest that, although the B.1.1.7 P681H mutation may slightly increase S1/S2 cleavage, this does not significantly impact viral entry or cell-cell spread.

2.
PLoS Pathog ; 18(3): e1010197, 2022 03.
Article in English | MEDLINE | ID: covidwho-1753207

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30-40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3-4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/veterinary , SARS-CoV-2 , Tropism
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296830

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 19 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus ) the most widely distributed cervid species in the Americas was shown to be highly susceptible to SARS-CoV-2 with reported natural infection rates approaching 40% in wild WTD populations in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2, deer fawns shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in WTD. Active virus replication was observed in respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple target sites of virus replication during acute infection. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.

4.
J Virol ; 96(3): e0145521, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1532961

ABSTRACT

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the outcome of coronavirus disease 2019 (COVID-19) have been linked to underlying health conditions and the age of affected individuals. Here, we assessed the effect of age on SARS-CoV-2 infection using a ferret model. For this, young (6-month-old) and aged (18- to 39-month-old) ferrets were inoculated intranasally with various doses of SARS-CoV-2. By using infectious virus shedding in respiratory secretions and seroconversion, we estimated that the infectious dose of SARS-CoV-2 in aged animals is ∼32 PFU per animal, while in young animals it was estimated to be ∼100 PFU. We showed that viral replication in the upper respiratory tract and shedding in respiratory secretions is enhanced in aged ferrets compared to young animals. Similar to observations in humans, this was associated with higher transcription levels of two key viral entry factors, ACE2 and TMPRSS2, in the upper respiratory tract of aged ferrets. IMPORTANCE In humans, ACE2 and TMPRSS2 are expressed in various cells and tissues, and differential expression has been described in young and old people, with a higher level of expressing cells being detected in the nasal brushing of older people than young individuals. We described the same pattern occurring in ferrets, and we demonstrated that age affects susceptibility of ferrets to SARS-CoV-2. Aged animals were more likely to get infected when exposed to lower infectious dose of the virus than young animals, and the viral replication in the upper respiratory tract and shedding are enhanced in aged ferrets. Together, these results suggest that the higher infectivity and enhanced ability of SARS-CoV-2 to replicate in aged individuals is associated, at least in part, with transcription levels of ACE2 and TMPRSS2 at the sites of virus entry. The young and aged ferret model developed here may represent a great platform to assess age-related differences in SARS-CoV-2 infection dynamics and replication.


Subject(s)
COVID-19/virology , Disease Susceptibility , Host-Pathogen Interactions , SARS-CoV-2/physiology , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biomarkers , COVID-19/genetics , COVID-19/immunology , Disease Models, Animal , Ferrets , Gene Expression , Host-Pathogen Interactions/immunology , Organ Specificity , RNA, Viral , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL