Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Lancet Reg Health Eur ; 18: 100422, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867458

ABSTRACT

Background: The clinical heterogeneity of COVID-19 suggests the existence of different phenotypes with prognostic implications. We aimed to analyze comorbidity patterns in critically ill COVID-19 patients and assess their impact on in-hospital outcomes, response to treatment and sequelae. Methods: Multicenter prospective/retrospective observational study in intensive care units of 55 Spanish hospitals. 5866 PCR-confirmed COVID-19 patients had comorbidities recorded at hospital admission; clinical and biological parameters, in-hospital procedures and complications throughout the stay; and, clinical complications, persistent symptoms and sequelae at 3 and 6 months. Findings: Latent class analysis identified 3 phenotypes using training and test subcohorts: low-morbidity (n=3385; 58%), younger and with few comorbidities; high-morbidity (n=2074; 35%), with high comorbid burden; and renal-morbidity (n=407; 7%), with chronic kidney disease (CKD), high comorbidity burden and the worst oxygenation profile. Renal-morbidity and high-morbidity had more in-hospital complications and higher mortality risk than low-morbidity (adjusted HR (95% CI): 1.57 (1.34-1.84) and 1.16 (1.05-1.28), respectively). Corticosteroids, but not tocilizumab, were associated with lower mortality risk (HR (95% CI) 0.76 (0.63-0.93)), especially in renal-morbidity and high-morbidity. Renal-morbidity and high-morbidity showed the worst lung function throughout the follow-up, with renal-morbidity having the highest risk of infectious complications (6%), emergency visits (29%) or hospital readmissions (14%) at 6 months (p<0.01). Interpretation: Comorbidity-based phenotypes were identified and associated with different expression of in-hospital complications, mortality, treatment response, and sequelae, with CKD playing a major role. This could help clinicians in day-to-day decision making including the management of post-discharge COVID-19 sequelae. Funding: ISCIII, UNESPA, CIBERES, FEDER, ESF.

2.
Emerg Microbes Infect ; 11(1): 1537-1549, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1860764

ABSTRACT

There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.Trial registration: ClinicalTrials.gov identifier: NCT04457505..Trial registration: ISRCTN.org identifier: ISRCTN16865246..


Subject(s)
COVID-19 , Circulating MicroRNA , Respiratory Distress Syndrome , COVID-19/complications , Circulating MicroRNA/genetics , Humans , Lung , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Survivors
6.
Archivos de bronconeumologia ; 2022.
Article in English | EuropePMC | ID: covidwho-1801724

ABSTRACT

Introduction The COVID-19 pandemic created tremendous challenges for health-care systems. Intensive care units (ICU) were hit with a large volume of patients requiring ICU admission, mechanical ventilation, and other organ support with very high mortality. The Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES), a network of Spanish researchers to investigate in respiratory disease, commissioned the current proposal in response to the Instituto de Salud Carlos III (ISCIII) call. Methods CIBERESUCICOVID is a multicenter, observational, prospective/retrospective cohort study of patients with COVID-19 admitted to Spanish ICUs. Several work packages were created, including study population and ICU data collection, follow-up, biomarkers and miRNAs, data management and quality. Results This study included 6102 consecutive patients admitted to 55 ICUs homogeneously distributed throughout Spain and the collection of blood samples from more than 1000 patients. We enrolled a large population of COVID-19 ICU-admitted patients including baseline characteristics, ICU and MV data, treatments complications, and outcomes. The in-hospital mortality was 31%, and 76% of patients required invasive mechanical ventilation. A 3-6 month and 1 year follow-up was performed. Few deaths after 1 year discharge were registered. Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. These antibodies contribute to prevent systemic dissemination of SARS-CoV-2. The severity of COVID-19 impacts the circulating miRNA profile. Plasma miRNA profiling emerges as a useful tool for risk-based patient stratification in critically ill COVID-19 patients. Conclusions We present the methodology used in a large multicenter study sponsored by ISCIII to determine the short- and long-term outcomes in patients with COVID-19 admitted to more than 50 Spanish ICUs.

7.
Arch Bronconeumol ; 58 Suppl 1: 22-31, 2022 Apr.
Article in English, Spanish | MEDLINE | ID: covidwho-1797167

ABSTRACT

INTRODUCTION: The COVID-19 pandemic created tremendous challenges for health-care systems. Intensive care units (ICU) were hit with a large volume of patients requiring ICU admission, mechanical ventilation, and other organ support with very high mortality. The Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES), a network of Spanish researchers to investigate in respiratory disease, commissioned the current proposal in response to the Instituto de Salud Carlos III (ISCIII) call. METHODS: CIBERESUCICOVID is a multicenter, observational, prospective/retrospective cohort study of patients with COVID-19 admitted to Spanish ICUs. Several work packages were created, including study population and ICU data collection, follow-up, biomarkers and miRNAs, data management and quality. RESULTS: This study included 6102 consecutive patients admitted to 55 ICUs homogeneously distributed throughout Spain and the collection of blood samples from more than 1000 patients. We enrolled a large population of COVID-19 ICU-admitted patients including baseline characteristics, ICU and MV data, treatments complications, and outcomes. The in-hospital mortality was 31%, and 76% of patients required invasive mechanical ventilation. A 3-6 month and 1 year follow-up was performed. Few deaths after 1 year discharge were registered. Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. These antibodies contribute to prevent systemic dissemination of SARS-CoV-2. The severity of COVID-19 impacts the circulating miRNA profile. Plasma miRNA profiling emerges as a useful tool for risk-based patient stratification in critically ill COVID-19 patients. CONCLUSIONS: We present the methodology used in a large multicenter study sponsored by ISCIII to determine the short- and long-term outcomes in patients with COVID-19 admitted to more than 50 Spanish ICUs.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/epidemiology , Critical Illness/therapy , Humans , Intensive Care Units , Pandemics , Prospective Studies , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
8.
Crit Care Explor ; 2(10): e0228, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1795062

ABSTRACT

OBJECTIVE: To evaluate the performance of the extracorporeal membrane oxygenation retrieval team at a high-volume extracorporeal membrane oxygenation center during the coronavirus disease 2019 pandemic. DESIGN: Observational study including all adult patients with confirmed infection due to severe acute respiratory syndrome coronavirus-2 cannulated at other centers and transported on extracorporeal membrane oxygenation to the ICU of the Vall d'Hebron University Hospital between 15 March and 10 June 2020. SETTING: The ICU (capacity expanded to 200 during the pandemic) of the Vall d'Hebron University Hospital (a 1,100-bed public university hospital in Barcelona), the referral center for extracorporeal respiratory support in Catalonia (7.5 million inhabitants). PATIENTS: Extracorporeal membrane oxygenation was considered if the Pao2/Fio2 ratio less than 80 mm Hg (refractory to prone position) and/or Paco2 greater than 80 mm Hg and pH less than 7.25 for more than 6 hours, and no contraindications for extracorporeal support were present. INTERVENTIONS: Venovenous extracorporeal membrane oxygenation was initiated in the primary center. Then, patients were transferred to the ICU of the Vall d'Hebron University Hospital where they received support until respiratory improvement. After decannulation, patients were discharged for rehabilitation at the primary center. MEASUREMENTS AND MAIN RESULTS: Nineteen patients with severe acute respiratory syndrome coronavirus-2 infection and with a mean Pao2/Fio2 ratio of 71 mm Hg (57-118 mm Hg) despite prone positioning and a mean Paco2 of 70 mm Hg (47-110 mm Hg) were transferred to our center from their primary hospital after cannulation and received venovenous extracorporeal membrane oxygenation support. Prior to cannulation, six patients (31.5%) presented vascular thrombosis, and nine (47.4%) were already receiving anticoagulant therapy. Eighteen transfers were carried out with no significant complications. While on extracorporeal membrane oxygenation, thrombotic events were recorded in nine patients (47.4%) and hemorrhagic events in 13 (68.4%). Thirteen patients (68.4%) were successfully weaned, and 12 (63.1%) were discharged home. CONCLUSIONS: Extracorporeal membrane oxygenation retrieval can rescue young, previously healthy patients with severe coronavirus disease 2019 in whom all the conventional respiratory measures have failed. Thrombotic and hemorrhagic complications are frequent in this cohort.

9.
Crit Care ; 26(1): 108, 2022 04 14.
Article in English | MEDLINE | ID: covidwho-1793838

ABSTRACT

BACKGROUND: We aimed to assess the efficacy of a closed-loop oxygen control in critically ill patients with moderate to severe acute hypoxemic respiratory failure (AHRF) treated with high flow nasal oxygen (HFNO). METHODS: In this single-centre, single-blinded, randomized crossover study, adult patients with moderate to severe AHRF who were treated with HFNO (flow rate ≥ 40 L/min with FiO2 ≥ 0.30) were randomly assigned to start with a 4-h period of closed-loop oxygen control or 4-h period of manual oxygen titration, after which each patient was switched to the alternate therapy. The primary outcome was the percentage of time spent in the individualized optimal SpO2 range. RESULTS: Forty-five patients were included. Patients spent more time in the optimal SpO2 range with closed-loop oxygen control compared with manual titrations of oxygen (96.5 [93.5 to 98.9] % vs. 89 [77.4 to 95.9] %; p < 0.0001) (difference estimate, 10.4 (95% confidence interval 5.2 to 17.2). Patients spent less time in the suboptimal range during closed-loop oxygen control, both above and below the cut-offs of the optimal SpO2 range, and less time above the suboptimal range. Fewer number of manual adjustments per hour were needed with closed-loop oxygen control. The number of events of SpO2 < 88% and < 85% were not significantly different between groups. CONCLUSIONS: Closed-loop oxygen control improves oxygen administration in patients with moderate-to-severe AHRF treated with HFNO, increasing the percentage of time in the optimal oxygenation range and decreasing the workload of healthcare personnel. These results are especially relevant in a context of limited oxygen supply and high medical demand, such as the COVID-19 pandemic. Trial registration The HILOOP study was registered at www. CLINICALTRIALS: gov under the identifier NCT04965844 .


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , COVID-19/therapy , Cannula , Cross-Over Studies , Humans , Hypoxia/etiology , Hypoxia/therapy , Oxygen/therapeutic use , Oxygen Inhalation Therapy/methods , Pandemics , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
10.
Journal of Anesthesia, Analgesia and Critical Care ; 2(1):15-15, 2022.
Article in English | BioMed Central | ID: covidwho-1779686

ABSTRACT

Sepsis and COVID-19 are two clinical conditions that can lead to a dysregulated inflammatory state causing multiorgan dysfunction, hypercytokinemia, and a high risk of death. Specific subgroups of critically ill patients with particular characteristics could benefit from rescue treatment with hemoadsorption. There is a lack of adequately designed randomized controlled trials evaluating the potential benefits of cytokine or endotoxin hemoadsorption. Critically ill COVID-19 patients with severe acute respiratory failure poorly responsive to conventional treatment could be candidates to receive cytokine hemoadsorption in the presence of high levels of interleukin 6. This treatment can also be suitable for patients with refractory septic shock and hypercytokinemia. In the context of high endotoxin activity, hemoadsorption with polymyxin B could improve clinical parameters and the prognosis of patients with refractory septic shock. Predictive enrichment, using biomarkers or other individual features, identifies potential responders to cytokine, endotoxin, or sequential hemoadsorption. Besides, recognizing the particular subsets of patients likely to respond to one or both types of hemoadsorption will aid the design of future studies that accurately validate the effectiveness of these therapies.

13.
Front Med (Lausanne) ; 8: 756517, 2021.
Article in English | MEDLINE | ID: covidwho-1703379

ABSTRACT

BACKGROUND: The pathophysiology of COVID-19-related critical illness is not completely understood. Here, we analyzed the microRNA (miRNA) profile of bronchial aspirate (BAS) samples from COVID-19 and non-COVID-19 patients admitted to the ICU to identify prognostic biomarkers of fatal outcomes and to define molecular pathways involved in the disease and adverse events. METHODS: Two patient populations were included (n = 89): (i) a study population composed of critically ill COVID-19 and non-COVID-19 patients; (ii) a prospective study cohort composed of COVID-19 survivors and non-survivors among patients assisted by invasive mechanical ventilation (IMV). BAS samples were obtained by bronchoaspiration during the ICU stay. The miRNA profile was analyzed using RT-qPCR. Detailed biomarker and bioinformatics analyses were performed. RESULTS: The deregulation in five miRNA ratios (miR-122-5p/miR-199a-5p, miR-125a-5p/miR-133a-3p, miR-155-5p/miR-486-5p, miR-214-3p/miR-222-3p, and miR-221-3p/miR-27a-3p) was observed when COVID-19 and non-COVID-19 patients were compared. In addition, five miRNA ratios segregated between ICU survivors and nonsurvivors (miR-1-3p/miR-124-3p, miR-125b-5p/miR-34a-5p, miR-126-3p/miR-16-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). Through multivariable analysis, we constructed a miRNA ratio-based prediction model for ICU mortality that optimized the best combination of miRNA ratios (miR-125b-5p/miR-34a-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). The model (AUC 0.85) and the miR-199a-5p/miR-9-5p ratio (AUC 0.80) showed an optimal discrimination value and outperformed the best clinical predictor for ICU mortality (days from first symptoms to IMV initiation, AUC 0.73). The survival analysis confirmed the usefulness of the miRNA ratio model and the individual ratio to identify patients at high risk of fatal outcomes following IMV initiation. Functional enrichment analyses identified pathological mechanisms implicated in fibrosis, coagulation, viral infections, immune responses and inflammation. CONCLUSIONS: COVID-19 induces a specific miRNA signature in BAS from critically ill patients. In addition, specific miRNA ratios in BAS samples hold individual and collective potential to improve risk-based patient stratification following IMV initiation in COVID-19-related critical illness. The biological role of the host miRNA profiles may allow a better understanding of the different pathological axes of the disease.

14.
J Crit Care ; 69: 154014, 2022 06.
Article in English | MEDLINE | ID: covidwho-1701879

ABSTRACT

PURPOSE: Dexamethasone is the only drug that has consistently reduced mortality in patients with COVID-19, especially in patients needing oxygen or invasive mechanical ventilation. However, there is a growing concern about the relation of dexamethasone with the unprecedented rates of ICU-acquired respiratory tract infections (ICU-RTI) observed in patients with severe COVID-19. METHODS: This was a multicenter, prospective cohort study; conducted in ten countries in Latin America and Europe. We included patients older than 18 with confirmed SARS-CoV-2 requiring ICU admission. A multivariate logistic regression and propensity score matching (PSM) analysis was conducted to determine the relation between dexamethasone treatment and ICU-RTI. RESULTS: A total of 3777 patients were included. 2065 (54.7%) were treated with dexamethasone within the first 24 h of admission. After performing the PSM, patients treated with dexamethasone showed significantly higher proportions of VAP (282/1652 [17.1%] Vs. 218/1652 [13.2%], p = 0.014). Also, dexamethasone treatment was identified as an adjusted risk factor of ICU-RTI in the multivariate logistic regression model (OR 1.64; 95%CI: 1.37-1.97; p < 0.001). CONCLUSION: Patients treated with dexamethasone for severe COVID-19 had a higher risk of developing ICU-acquired respiratory tract infections after adjusting for days of invasive mechanical ventilation and ICU length of stay, suggesting a cautious use of this treatment.


Subject(s)
COVID-19 , COVID-19/drug therapy , Dexamethasone/adverse effects , Humans , Intensive Care Units , Prospective Studies , Risk Factors , SARS-CoV-2
15.
Crit Care ; 26(1): 37, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1690894

ABSTRACT

BACKGROUND: Non-invasive oxygenation strategies have a prominent role in the treatment of acute hypoxemic respiratory failure during the coronavirus disease 2019 (COVID-19). While the efficacy of these therapies has been studied in hospitalized patients with COVID-19, the clinical outcomes associated with oxygen masks, high-flow oxygen therapy by nasal cannula and non-invasive mechanical ventilation in critically ill intensive care unit (ICU) patients remain unclear. METHODS: In this retrospective study, we used the best of nine covariate balancing algorithms on all baseline covariates in critically ill COVID-19 patients supported with > 10 L of supplemental oxygen at one of the 26 participating ICUs in Catalonia, Spain, between March 14 and April 15, 2020. RESULTS: Of the 1093 non-invasively oxygenated patients at ICU admission treated with one of the three stand-alone non-invasive oxygenation strategies, 897 (82%) required endotracheal intubation and 310 (28%) died during the ICU stay. High-flow oxygen therapy by nasal cannula (n = 439) and non-invasive mechanical ventilation (n = 101) were associated with a lower rate of endotracheal intubation (70% and 88%, respectively) than oxygen masks (n = 553 and 91% intubated), p < 0.001. Compared to oxygen masks, high-flow oxygen therapy by nasal cannula was associated with lower ICU mortality (hazard ratio 0.75 [95% CI 0.58-0.98), and the hazard ratio for ICU mortality was 1.21 [95% CI 0.80-1.83] for non-invasive mechanical ventilation. CONCLUSION: In critically ill COVID-19 ICU patients and, in the absence of conclusive data, high-flow oxygen therapy by nasal cannula may be the approach of choice as the primary non-invasive oxygenation support strategy.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Intensive Care Units , Intubation, Intratracheal , Oxygen Inhalation Therapy , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2 , Spain
16.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-316534

ABSTRACT

Background: . Some patients who had previously presented with COVID-19 have been reported to develop persistent COVID-19 symptoms. Whilst this information has been adequately recognised and extensively published with respect to non-critically ill patients, less is known about the prevalence and risk factors and characteristics of persistent COVID_19 . On other hand these patients have very often intensive care unit-acquired pneumonia (ICUAP). A second infectious hit after COVID increases the length of ICU stay and mechanical ventilation and could have an influence in the poor health post-Covid 19 syndrome in ICU discharged patients Methods: This prospective, multicentre and observational study was done across 40 selected ICUs in Spain. Consecutive patients with COVID-19 requiring ICU admission were recruited and evaluated three months after hospital discharge. Results: A total of 1,255 ICU patients were scheduled to be followed up at 3 months;however, the final cohort comprised 991 (78.9%) patients. A total of 315 patients developed ICUAP (97% of them had ventilated ICUAP) Patients requiring invasive mechanical ventilation had persistent, post-COVID-19 symptoms than those who did not require mechanical ventilation. Female sex, duration of ICU stay, and development of ICUAP were independent risk factors for persistent poor health post-COVID-19. Conclusions: : Persistent, post-COVID-19 symptoms occurred in more than two-thirds of patients. Female sex, duration of ICU stay and the onset of ICUAP comprised all independent risk factors for persistent poor health post-COVID-19. Prevention of ICUAP could have beneficial effects in poor health post-Covid 19

17.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320380

ABSTRACT

Background: A dysregulated inflammatory response, known as “cytokine storm”, plays an important role in the pathophysiology of coronavirus 2019 disease (COVID-19). There is a subgroup of patients who develop a hyperinflammatory response with severe respiratory failure and organ dysfunction with high mortality. Identifying these patients is outstanding as they could benefit from specific therapies, such as cytokine removal by hemoadsorption. Methods: Single-center, observational and prospective study of critically ill patients with SARS-CoV-2 pneumonia, severe acute respiratory failure and hypercytokinemia. All patients received cytokine hemoadsorption using Cytosorb ® (Cytosorbents Europe, Berlin, Germany). The indication for treatment was acute respiratory failure, inadequate prone response, and hypercytokinemia. Results: : A total of 343 patients were admitted to the ICU due to SARS-Cov-2 infection between March 3, 2020, to June 22, 2020. Of these, six patients [5 (83.3%) men;mean age 57 (10.5) years;SOFA 5 (1.4);mean Acute Physiology And Chronic Health Evaluation (APACHE) II score 19.5 (6)] underwent hemoadsorption with Cytosorb ® . All patients fulfilled the Berlin criteria for severe acute respiratory distress syndrome (ARDS), underwent prone positioning, and were on mechanical ventilation for 15.2 (7.2) days. One session of 16 (9.0) hours duration was performed. IL-6 levels were significantly reduced [(pre- hemoadsorption levels 17.367 (4.539– 22.532) pg/ml;post-hemoadsorption levels 2.403 (917 – 3.724) pg/ml, p = 0.043], and improvements in oxygenation were observed [pre-hemoadsorption PaO 2 /FiO 2 ratio was 103 (18.4), post- hemoadsorption PaO2/FiO2 ratio was 222 (20.9), p = 0.029]. We documented the clinical improvement and rapid reversal of organ dysfunction [pre-hemoadsorption Sequential Organ Failure Assessment (SOFA) score 9 (4.7);post- hemoadsorption SOFA score 7.7 (5.4), p = 0.046]. Inflammatory markers (C-reactive protein, D-dimer, and ferritin) also improved significantly. Mean ICU stay was 17.2 (8.0) days. ICU and in-hospital mortality was 33.7%. Conclusions: : In our cohort, patients with SARS-CoV-2 pneumonia and severe acute respiratory failure and hypercytokinemia who received cytokine hemoadsorption, an important reduction in IL-6 levels and improvements in oxygenation and SOFA score were observed.

18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320148

ABSTRACT

Background: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Methods: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 Intensive Care Units(ICU) in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. Results: : The database included a total of 2,022 patients (mean age 64[IQR5-71] years, 1423(70.4%) male, median APACHE II score (13[IQR10-17]) and SOFA score (5[IQR3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A(mild) phenotype (537;26.7%) included older age (<65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623,30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C(severe) phenotype was the most common (857;42.5%) and was characterized by the interplay of older age (>65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. Conclusion: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice .

19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317390

ABSTRACT

Background: The steroids are currently used as standard treatment for severe COVID-19. However, the evidence is weak. Our aim is to determine if the use of corticosteroids was associated with Intensive Care Unit (ICU) mortality among whole population and pre-specified clinical phenotypes. Methods: A secondary analysis derived from multicenter, observational study of adult critically ill patients with confirmed COVID-19 disease admitted to 63 ICUs in Spain. Three phenotypes were derived by non-supervised clustering analysis from whole population and classified as (A: severe, B: critical and C: life-threatening). The primary outcome was ICU mortality. We performed a Multivariate analysis after propensity score full matching (PS), Cox proportional hazards (CPH), Cox covariate time interaction (TIR), Weighted Cox Regression (WCR) and Fine-Gray analysis(sHR) to assess the impact of corticosteroids on ICU mortality according to the whole population and distinctive patient clinical phenotypes. Results: : A total of 2,017 patients were analyzed, 1171(58%) with corticosteroids. After PS, corticosteroids were shown not to be associated with ICU mortality (OR:1.0,95%CI:0.98-1.15). Corticosteroids were administered in 298/537(55.5%) patients of “A” phenotype and their use was not associated with ICU mortality (HR=0.85[0.55-1.33]). A total of 338/623(54.2%) patients in “B” phenotype received corticosteroids. The CPH (HR =0.65 [0.46-0.91]) and TIR regression (1- 25 day tHR=0.56[0.39-0.82] and >25 days tHR=1.53[1.03-7.12]) showed a biphasic effect of corticosteroids due to proportional assumption violation. No effect of corticosteroids on ICU mortality was observed when WCR was performed (wHR=0.72[0.49-1.05]). Finally, 535/857(62.4%) patients in “C” phenotype received corticosteroids. The CPH (HR=0.73[0.63-0.98]) and TIR regression (1- 25 day tHR=0.69[ 0.53-0.89] and >25 days tHR=1.30[ 1.14-3.25]) showed a biphasic effect of corticosteroids and proportional assumption violation. However, wHR (0.75[0.58-0.98]) and sHR (0.79[0.63-0.98]) suggest a protective effect of corticosteroids on ICU mortality. Conclusion: Our finding warns against the widespread use of corticosteroids in all critically ill patients with COVID-19 at moderate-high dose. Only patients with the highest severity could benefit from steroid treatment although this effect on clinical outcome was minimized during ICU stay.

SELECTION OF CITATIONS
SEARCH DETAIL