Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Prison Health ; ahead-of-print(ahead-of-print)2021 08 03.
Article in English | MEDLINE | ID: covidwho-1501266

ABSTRACT

PURPOSE: In this work, the authors present some of the key results found during early efforts to model the COVID-19 outbreak inside a UK prison. In particular, this study describes outputs from an idealised disease model that simulates the dynamics of a COVID-19 outbreak in a prison setting when varying levels of social interventions are in place, and a Monte Carlo-based model that assesses the reduction in risk of case importation, resulting from a process that requires incoming prisoners to undergo a period of self-isolation prior to admission into the general prison population. DESIGN/METHODOLOGY/APPROACH: Prisons, typically containing large populations confined in a small space with high degrees of mixing, have long been known to be especially susceptible to disease outbreaks. In an attempt to meet rising pressures from the emerging COVID-19 situation in early 2020, modellers for Public Health England's Joint Modelling Cell were asked to produce some rapid response work that sought to inform the approaches that Her Majesty's Prison and Probation Service (HMPPS) might take to reduce the risk of case importation and sustained transmission in prison environments. FINDINGS: Key results show that deploying social interventions has the potential to considerably reduce the total number of infections, while such actions could also reduce the probability that an initial infection will propagate into a prison-wide outbreak. For example, modelling showed that a 50% reduction in the risk of transmission (compared to an unmitigated outbreak) could deliver a 98% decrease in total number of cases, while this reduction could also result in 86.8% of outbreaks subsiding before more than five persons have become infected. Furthermore, this study also found that requiring new arrivals to self-isolate for 10 and 14 days prior to admission could detect up to 98% and 99% of incoming infections, respectively. RESEARCH LIMITATIONS/IMPLICATIONS: In this paper we have presented models which allow for the studying of COVID-19 in a prison scenario, while also allowing for the assessment of proposed social interventions. By publishing these works, the authors hope these methods might aid in the management of prisoners across additional scenarios and even during subsequent disease outbreaks. Such methods as described may also be readily applied use in other closed community settings. ORIGINALITY/VALUE: These works went towards informing HMPPS on the impacts that the described strategies might have during COVID-19 outbreaks inside UK prisons. The works described herein are readily amendable to the study of a range of addition outbreak scenarios. There is also room for these methods to be further developed and built upon which the timeliness of the original project did not permit.


Subject(s)
COVID-19/prevention & control , Disaster Planning/organization & administration , Disease Outbreaks/prevention & control , Prisoners/statistics & numerical data , Prisons/organization & administration , COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Forecasting , Health Personnel/education , Humans , United Kingdom
2.
Epidemiol Infect ; 149: e238, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1500390

ABSTRACT

The effectiveness of screening travellers during times of international disease outbreak is contentious, especially as the reduction in the risk of disease importation can be very small. Border screening typically consists of travellers being thermally scanned for signs of fever and/or completing a survey declaring any possible symptoms prior to admission to their destination country; while more thorough testing typically exists, these would generally prove more disruptive to deploy. In this paper, we describe a simple Monte Carlo based model that incorporates the epidemiology of coronavirus disease-2019 (COVID-19) to investigate the potential decrease in risk of disease importation that might be achieved by requiring travellers to undergo screening upon arrival during the current pandemic. This is a purely theoretical study to investigate the maximum impact that might be attained by deploying a test or testing programme simply at the point of entry, through which we may assess such action in the real world as a method of decreasing the risk of importation. We, therefore, assume ideal conditions such as 100% compliance among travellers and the use of a 'perfect' test. In addition to COVID-19, we also apply the presented model to simulated outbreaks of influenza, severe acute respiratory syndrome (SARS) and Ebola for comparison. Our model only considers screening implemented at airports, being the predominant method of international travel. Primary results showed that in the best-case scenario, screening at the point of entry may detect a maximum of 8.8% of travellers infected with COVID-19, compared to 34.8.%, 9.7% and 3.0% for travellers infected with influenza, SARS and Ebola respectively. While results appear to indicate that screening is more effective at preventing disease ingress when the disease in question has a shorter average incubation period, our results suggest that screening at the point of entry alone does not represent a sufficient method to adequately protect a nation from the importation of COVID-19 cases.


Subject(s)
COVID-19/diagnosis , COVID-19/transmission , Mass Screening , SARS-CoV-2 , Travel , COVID-19/prevention & control , Humans , Models, Biological , Monte Carlo Method , Risk Factors
3.
Int J Prison Health ; ahead-of-print(ahead-of-print)2021 08 03.
Article in English | MEDLINE | ID: covidwho-1337316

ABSTRACT

PURPOSE: In this work, the authors present some of the key results found during early efforts to model the COVID-19 outbreak inside a UK prison. In particular, this study describes outputs from an idealised disease model that simulates the dynamics of a COVID-19 outbreak in a prison setting when varying levels of social interventions are in place, and a Monte Carlo-based model that assesses the reduction in risk of case importation, resulting from a process that requires incoming prisoners to undergo a period of self-isolation prior to admission into the general prison population. DESIGN/METHODOLOGY/APPROACH: Prisons, typically containing large populations confined in a small space with high degrees of mixing, have long been known to be especially susceptible to disease outbreaks. In an attempt to meet rising pressures from the emerging COVID-19 situation in early 2020, modellers for Public Health England's Joint Modelling Cell were asked to produce some rapid response work that sought to inform the approaches that Her Majesty's Prison and Probation Service (HMPPS) might take to reduce the risk of case importation and sustained transmission in prison environments. FINDINGS: Key results show that deploying social interventions has the potential to considerably reduce the total number of infections, while such actions could also reduce the probability that an initial infection will propagate into a prison-wide outbreak. For example, modelling showed that a 50% reduction in the risk of transmission (compared to an unmitigated outbreak) could deliver a 98% decrease in total number of cases, while this reduction could also result in 86.8% of outbreaks subsiding before more than five persons have become infected. Furthermore, this study also found that requiring new arrivals to self-isolate for 10 and 14 days prior to admission could detect up to 98% and 99% of incoming infections, respectively. RESEARCH LIMITATIONS/IMPLICATIONS: In this paper we have presented models which allow for the studying of COVID-19 in a prison scenario, while also allowing for the assessment of proposed social interventions. By publishing these works, the authors hope these methods might aid in the management of prisoners across additional scenarios and even during subsequent disease outbreaks. Such methods as described may also be readily applied use in other closed community settings. ORIGINALITY/VALUE: These works went towards informing HMPPS on the impacts that the described strategies might have during COVID-19 outbreaks inside UK prisons. The works described herein are readily amendable to the study of a range of addition outbreak scenarios. There is also room for these methods to be further developed and built upon which the timeliness of the original project did not permit.


Subject(s)
COVID-19/prevention & control , Disaster Planning/organization & administration , Disease Outbreaks/prevention & control , Prisoners/statistics & numerical data , Prisons/organization & administration , COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Forecasting , Health Personnel/education , Humans , United Kingdom
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200277, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309695

ABSTRACT

We investigate the effect of school closure and subsequent reopening on the transmission of COVID-19, by considering Denmark, Norway, Sweden and German states as case studies. By comparing the growth rates in daily hospitalizations or confirmed cases under different interventions, we provide evidence that school closures contribute to a reduction in the growth rate approximately 7 days after implementation. Limited school attendance, such as older students sitting exams or the partial return of younger year groups, does not appear to significantly affect community transmission. In countries where community transmission is generally low, such as Denmark or Norway, a large-scale reopening of schools while controlling or suppressing the epidemic appears feasible. However, school reopening can contribute to statistically significant increases in the growth rate in countries like Germany, where community transmission is relatively high. In all regions, a combination of low classroom occupancy and robust test-and-trace measures were in place. Our findings underscore the need for a cautious evaluation of reopening strategies. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/pathogenicity , Adolescent , COVID-19/transmission , COVID-19/virology , Denmark/epidemiology , Europe/epidemiology , Germany/epidemiology , Humans , Norway/epidemiology , Schools/trends , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...