Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317743

ABSTRACT

Background: The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) represents a major threat to human health, which impairs the functionality of several organs. One of the hardest challenges in the fight against COVID-19 is the development of wide-scale, effective, and rapid laboratory tests to control disease severity, progression, and possible sudden worsening. Monitoring patients in real-time is indeed highly demanded in this pandemic era when physicians need reliable and quantitative tools to prioritize patients’access to intensive care departments. In this regard, salivary biomarkers are extremely promising, as they allow for a fast and non-invasive specimens’collection, which can be repeated multiple times. Methods: We compare salivary levels of immunoglobulin A subclasses (IgA1 and IgA2) and free-light chains (FLC k and λ) in a cohort of 29 SARS-CoV-2 patients and 21 healthy subjects. Results: We found that each biomarkers differs significantly between the two groups, with p-values ranging from 10-8 to 10-4. The performance ranking of these markers, shows that λFLC level (p=1.4e-8) is the best-suited candidate to discriminate the two groups, with an accuracy of 0.94 (0.87-1.00 95% CI), a precision of 0.91 (0.81-1.00 95% CI), a sensitivity of 1.00 (0.96-1.00 95% CI) and a specificity of 0.86 (0.70-1.00 95% CI). Conclusion: These results suggest λFLC as an ideal indicator of patient conditions. This is more strengthened in consideration that λFLC half-life (approximately 6 hours) is significantly shorter than the IgA one (21 days): thus λFLC appears displaying the potential to effectively monitor patients fluctuation in real-time.

2.
J Pers Med ; 11(5)2021 May 08.
Article in English | MEDLINE | ID: covidwho-1224056

ABSTRACT

The ongoing outbreak of coronavirus disease 2019 (COVID-19), which impairs the functionality of several organs, represents a major threat to human health. One of the hardest challenges in the fight against COVID-19 is the development of wide-scale, effective, and rapid laboratory tests to control disease severity, progression, and possible sudden worsening. Monitoring patients in real-time is highly demanded in this pandemic era when physicians need reliable and quantitative tools to prioritize patients' access to intensive care departments. In this regard, salivary biomarkers are extremely promising, as they allow for the fast and non-invasive collection of specimens and can be repeated multiple times. METHODS: We compare salivary levels of immunoglobulin A subclasses (IgA1 and IgA2) and free light chains (kFLC and λFLC) in a cohort of 29 SARS-CoV-2 patients and 21 healthy subjects. RESULTS: We found that each biomarker differs significantly between the two groups, with p-values ranging from 10-8 to 10-4. A Receiving Operator Curve analysis shows that λFLC level is the best-suited candidate to discriminate the two groups (AUC = 0.96), with an accuracy of 0.94 (0.87-1.00 95% CI), a precision of 0.91 (0.81-1.00 95% CI), a sensitivity of 1.00 (0.96-1.00 95% CI), and a specificity of 0.86 (0.70-1.00 95% CI). CONCLUSION: These results suggest λFLC as an ideal indicator of patient conditions. This hypothesis is strengthened by the consideration that the λFLC half-life (approximately 6 h) is significantly shorter than the IgA one (21 days), thus confirming the potential of λFLC for effectively monitoring patients' fluctuation in real-time.

SELECTION OF CITATIONS
SEARCH DETAIL