Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292873


Pathophysiological mechanisms of neurological disorders in patients with coronavirus disease 2019 (COVID-19) are poorly understood, partly because of a lack of high-resolution neuroimaging data. We applied SynthSR, a convolutional neural network that synthesizes high-resolution isotropic research-quality data from thick-slice clinical MRI data, to a cohort of 11 patients with severe COVID-19. SynthSR successfully synthesized T1-weighted MPRAGE data at 1 mm spatial resolution for all 11 patients, each of whom had at least one brain lesion. Correlations between volumetric measures derived from synthesized and acquired MPRAGE data were strong for the cortical grey matter, subcortical grey matter, brainstem, hippocampus, and hemispheric white matter (r=0.84 to 0.96, p≤0.001), but absent for the cerebellar white matter and corpus callosum (r=0.04 to 0.17, p>0.61). SynthSR creates an opportunity to quantitatively study clinical MRI scans and elucidate the pathophysiology of neurological disorders in patients with COVID-19, including those with focal lesions.

J Infect Dis ; 223(1): 38-46, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1066343


BACKGROUND: We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care. METHODS: We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, 7 March-2 May) and prospective (n = 2205, 3-14 May) cohorts. Outcomes were hospitalization, critical illness (intensive care unit or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio (E/O). Discrimination was assessed by area under the receiver operating curve (AUC). RESULTS: In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, respectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio [E/O]: 1.01; AUC: 0.76), for critical illness (E/O: 1.03; AUC: 0.79), and for death (E/O: 1.63; AUC: 0.93). Among 30 predictors, the top 5 were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate. CONCLUSIONS: CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to COVID-19 infection.

COVID-19/diagnosis , Severity of Illness Index , Adult , Aged , Critical Illness , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Models, Theoretical , Outpatients , Predictive Value of Tests , Prognosis , Prospective Studies , ROC Curve , Sensitivity and Specificity