Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Year range
2.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333705

ABSTRACT

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) plasma viremia has been associated with severe disease and death in coronavirus disease 2019 (COVID-19) in small-scale cohort studies. The mechanisms behind this association remain elusive. METHODS: We evaluated the relationship between SARS-CoV-2 viremia, disease outcome, inflammatory and proteomic profiles in a cohort of COVID-19 emergency department participants. SARS-CoV-2 viral load was measured using qRT-PCR based platform. Proteomic data were generated with Proximity Extension Assay (PEA) using the Olink platform. RESULTS: Three hundred participants with nucleic acid test-confirmed COVID-19 were included in this study. Levels of plasma SARS-CoV-2 viremia at the time of presentation predicted adverse disease outcomes, with an adjusted odds ratio (aOR) of 10.6 (95% confidence interval [CI] 4.4, 25.5, P<0.001) for severe disease (mechanical ventilation and/or 28-day mortality) and aOR of 3.9 (95%CI 1.5, 10.1, P=0.006) for 28-day mortality. Proteomic analyses revealed prominent proteomic pathways associated with SARS-CoV-2 viremia, including upregulation of SARS-CoV-2 entry factors (ACE2, CTSL, FURIN), heightened markers of tissue damage to the lungs, gastrointestinal tract, endothelium/vasculature and alterations in coagulation pathways. CONCLUSIONS: These results highlight the cascade of vascular and tissue damage associated with SARS-CoV-2 plasma viremia that underlies its ability to predict COVID-19 disease outcomes.

3.
MEDLINE; 2022.
Preprint in English | MEDLINE | ID: ppcovidwho-329834

ABSTRACT

There is increasing evidence that the risk of SARS-CoV-2 infection among vaccinated individuals is variant-specific, suggesting that protective immunity against SARS-CoV-2 may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. For individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.

4.
MEDLINE; 2022.
Preprint in English | MEDLINE | ID: ppcovidwho-329734

ABSTRACT

Clinical features of SARS-CoV-2 Omicron variant infection, including incubation period and transmission rates, distinguish this variant from preceding variants. However, whether the duration of shedding of viable virus differs between omicron and previous variants is not well understood. To characterize how variant and vaccination status impact shedding of viable virus, we serially sampled symptomatic outpatients newly diagnosed with COVID-19. Anterior nasal swabs were tested for viral load, sequencing, and viral culture. Time to PCR conversion was similar between individuals infected with the Delta and the Omicron variant. Time to culture conversion was also similar, with a median time to culture conversion of 6 days (interquartile range 4-8 days) in both groups. There were also no differences in time to PCR or culture conversion by vaccination status.

5.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326686

ABSTRACT

Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL