Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mol Ther ; 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1796007

ABSTRACT

Self-amplifying RNA vaccines may induce equivalent or more potent immune responses at lower doses compared to non-replicating mRNA vaccines via amplified antigen expression. In this paper, we demonstrate that 1 µg of an LNP-formulated dual-antigen self-amplifying RNA vaccine (ZIP1642), encoding both the S-RBD and N antigen, elicits considerably higher neutralizing antibody titers against Wuhan-like Beta B.1.351 and Delta B.1.617.2 SARS-CoV-2 variants compared to those of convalescent patients. In addition, ZIP1642 vaccination in mice expanded both S- and N-specific CD3+CD4+ and CD3+CD8+ T cells and caused a Th1 shifted cytokine response. We demonstrate that the induction of such dual antigen-targeted cell-mediated immune response may provide better protection against variants displaying highly mutated Spike proteins, as infectious viral loads of both Wuhan-like and Beta variants were decreased after challenge of ZIP1642 vaccinated hamsters. Supported by these results, we encourage redirecting focus toward the induction of multiple antigen-targeted cell-mediated immunity in addition to neutralizing antibody responses to bypass waning antibody responses and attenuate infectious breakthrough and disease severity of future SARS-CoV-2 variants.

2.
Antiviral Res ; 202: 105311, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773103

ABSTRACT

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Subject(s)
COVID-19 , HIV Infections , HIV Protease Inhibitors , Animals , COVID-19/drug therapy , Cricetinae , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Lung , Mesocricetus , Nelfinavir/pharmacology , Nelfinavir/therapeutic use , RNA, Viral , Ritonavir/therapeutic use , SARS-CoV-2
3.
Microorganisms ; 10(3)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1742552

ABSTRACT

Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. Increased off-label use of ivermectin for COVID-19 has been reported. We here assessed the effect of ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of molnupiravir (LagevrioTM) when combined with this drug. This study contributes to the growing body of evidence that ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of ivermectin for the treatment of COVID-19.

4.
Nat Commun ; 13(1): 719, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692616

ABSTRACT

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Subject(s)
COVID-19/drug therapy , Disease Models, Animal , Lactams/administration & dosage , Leucine/administration & dosage , Nitriles/administration & dosage , Proline/administration & dosage , SARS-CoV-2/drug effects , Viral Protease Inhibitors/administration & dosage , A549 Cells , Administration, Oral , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cricetinae , Humans , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mesocricetus , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
5.
Antiviral Res ; 198: 105253, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654044

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the ancestral strain and the other SARS-CoV-2 VoCs replicate efficiently in and cause a COVID19-like pathology in Syrian hamsters. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain in the hamster model. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infected hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia.


Subject(s)
COVID-19/veterinary , Disease Models, Animal , SARS-CoV-2/growth & development , Animals , Cricetinae , Humans , Lung/virology , Mesocricetus/virology , Species Specificity , Viral Load
6.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1450584

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
7.
EBioMedicine ; 72: 103595, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1433162

ABSTRACT

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Subject(s)
Amides/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Lung/virology , Pyrazines/therapeutic use , Amides/pharmacology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/transmission , Cytidine/pharmacology , Cytidine/therapeutic use , Disease Models, Animal , Drug Therapy, Combination , Female , Hydroxylamines/pharmacology , Mesocricetus , Pyrazines/pharmacology , RNA, Viral , Treatment Outcome , Viral Load
8.
Cell Rep ; 37(2): 109814, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433045

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Subject(s)
Broadly Neutralizing Antibodies/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Cell Line , Cricetinae , Disease Models, Animal , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Neutralization Tests , Protein Binding/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Structure-Activity Relationship , Vaccination
9.
J Infect Dis ; 224(5): 749-753, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1411568

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. Currently available monoclonal antibodies and vaccines appear to have reduced efficacy against some of these VoCs. Antivirals targeting conserved proteins of SARS-CoV-2 are unlikely to be affected by mutations arising in VoCs and should therefore be effective against emerging variants. We here investigate the efficacy of molnupiravir, currently in phase 2 clinical trials, in hamsters infected with Wuhan strain or B.1.1.7 and B.1.351 variants. Molnupiravir proved to be effective against infections with each of the variants and therefore may have potential combating current and future emerging VoCs.


Subject(s)
COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/pharmacology , Disease Models, Animal , Female , Humans , Mutation/drug effects , Pandemics/prevention & control , SARS-CoV-2/immunology
10.
EBioMedicine ; 68: 103403, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1245928

ABSTRACT

BACKGROUND: Within one year after its emergence, more than 108 million people acquired SARS-CoV-2 and almost 2·4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the United Kingdom, UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1) variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics. METHODS: We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 variants in female Syrian golden hamsters to assess their relative infectivity and virulence in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. FINDINGS: A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. INTERPRETATION: We established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC. FUNDING: Stated in the acknowledgment.


Subject(s)
COVID-19/pathology , Cytokines/genetics , Respiratory System/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/diagnostic imaging , COVID-19/genetics , Disease Models, Animal , Evolution, Molecular , Female , Gene Expression Profiling , Gene Expression Regulation , Mesocricetus , Respiratory System/diagnostic imaging , Respiratory System/pathology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Virulence , X-Ray Microtomography
11.
Biochem Biophys Res Commun ; 555: 134-139, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1157141

ABSTRACT

There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns. ALG-097111 potently inhibited SARS-CoV-2 3CLpro (IC50 = 7 nM) without affecting the activity of human cathepsin L (IC50 > 10 µM). When ALG-097111 was dosed in hamsters challenged with SARS-CoV-2, a robust and significant 3.5 log10 (RNA copies/mg) reduction of the viral RNA copies and 3.7 log10 (TCID50/mg) reduction in the infectious virus titers in the lungs was observed. These results provide the first in vivo validation for the SARS-CoV-2 3CLpro as a promising therapeutic target for selective small molecule inhibitors.


Subject(s)
Amides/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Disease Models, Animal , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacokinetics , Animals , COVID-19/virology , Cathepsin L/antagonists & inhibitors , Cell Line , Cricetinae , Cysteine Proteinase Inhibitors/pharmacokinetics , Female , Humans , Inhibitory Concentration 50 , Male , Mesocricetus/virology , Reproducibility of Results , SARS-CoV-2/growth & development , Serine Endopeptidases , Substrate Specificity , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL