Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Aging Clin Exp Res ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2129513

ABSTRACT

BACKGROUND: There is a paucity of knowledge about the effects of COronaVIrus Disease-19 (COVID-19) on long-term frailty development or progression over time. AIM: This study aims to assess transitions in frailty status in older adults who survived hospitalization for COVID-19. METHODS: This is a longitudinal panel study. A multidisciplinary outpatient follow-up service was established since summer 2020, for the evaluation of individuals discharged alive, after hospitalization due to COVID-19. Frailty status was assessed in-hospital and at follow-up using the clinical frailty scale (CFS). Main patients' characteristics, including health, functional, cognitive, and psychological status were collected. RESULTS: A total of 177 patients aged 65 years and older were evaluated until June 2022. They were predominantly male, with a median age of 70 (Q1-Q3 67-75) years and a median body mass index of 27.5 (Q1-Q3 24.9-30.6) kg/m2 at hospital admission. The median follow-up time was 6.3 (Q1-Q3 3.7-10.9) months. Sixty-one patients (34.5%) scored worse at CFS follow-up compared to hospital admission, and twenty-two patients (12.4%) became frail. DISCUSSION AND CONCLUSION: This study shows that one out of three older patients previously hospitalized for COVID-19 had an unfavorable transition in CFS score during a median follow-up of nearly 6 months. Specific interventions to prevent frailty development or progression should be considered for patients at risk. Further studies are required to confirm our findings.

2.
Intensive and Critical Care Nursing ; : 103350, 2022.
Article in English | ScienceDirect | ID: covidwho-2105033

ABSTRACT

Objectives Patients with severe acute respiratory distress syndrome (ARDS) may require veno-venous extracorporeal membrane oxygenation (V-V ECMO) support. For ARDS patients in peripheral hospitals, retrieval by mobile ECMO teams and transport to high-volume centers is associated with improved outcomes, including the recent COVID-19 pandemic. To enable a safe transport of patients, a specialised ECMO-retrieval program needs to be implemented. However, there is insufficient evidence on how to safely and efficiently perform ECMO retrievals. We report single-centre data from out-of-centre initiations of VV-ECMO before and during the COVID-19 pandemic. Design & Setting: single-centre retrospective study. We include all the retrievals performed by our ECMO centre between January 1st, 2014, and April 30th, 2021. Results One hundred ECMO missions were performed in the study period, for a median retrieval volume of 13 (IQR: 9-16) missions per year. Cause of ARDS was COVID-19 in 10 patients (10%). 98 (98%) patients were retrieved and transported to our ECMO centre. To allow safe transport, 91 of them were cannulated on-site and transported on V-V ECMO. The remaining 7 patients were centralised without ECMO, but they were all connected to V-V ECMO in the first 24 hours. No complications occurred during patient transport. The median duration of the ECMO mission was 7 hours (IQR: 6-9, range: 2 – 17). Median duration of ECMO support was 14 days (IQR 9-24), whereas the ICU stay was 24 days (IQR 18-44). Overall, 73 patients were alive at hospital discharge (74%). Survival rate was similar in non-COVID-19 and COVID-19 group (73% vs. 80%, p=0.549). Conclusion In this single-centre experience, before and during COVID-19 era, retrieval and ground transportation of ECMO patients was feasible and was not associated with complications. Key factors of an ECMO retrieval program include a careful selection of the transport ambulance, training of a dedicated ECMO mobile team and preparation of specific checklists and standard operating procedures.

3.
J Vasc Access ; : 11297298221132073, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2098242

ABSTRACT

BACKGROUND: Femorally inserted central catheters are increasingly used, especially after the COVID-19 pandemic, also thanks to widespread of tunneling techniques that allow the exit site to be moved away from the groin. METHODS: In this retrospective observational study, femorally inserted catheters, with exit site at mid-thigh and the tip in Inferior vena cava or in Inferior vena cava at the junction with right atrium, have been observed and complications have been analyzed. All catheters were inserted by trained Nurses of a tertiary hospital Vascular Access Team. RESULTS: In 142 catheters (126 inserted via common femoral vein and 16 inserted via superficial femoral vein) and 3060 catheter days, we observed an infection rate of 1.3 events/1000 catheter days (all of them in oncologic patients and up to 30 days of catheterization), 2 cases of thrombotic events (1.41%) and 17 cases of accidental removal (11.97%). Other rare complications, as primary malposition, tip migration, arterial pseudoaneurysm, have been recorded. The average length of catheters inserted, from the exit site to the tip, was 47.6 ± 2.4 cm. CONCLUSION: The attention to the correct position of the tip, the exit site at mid-thigh and the new techniques during insertion make these femoral catheters as safe as other central vascular access devices. For this kind of central access device, a catheter at least 50 cm long is needed.

4.
JAMA Netw Open ; 5(10): e2238871, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2084948

ABSTRACT

Importance: Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective: To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants: This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures: COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures: The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results: Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance: In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.


Subject(s)
COVID-19 , Pneumonia , Humans , Male , Female , Middle Aged , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Critical Illness/therapy , COVID-19 Vaccines , Retrospective Studies , Cohort Studies , BNT162 Vaccine , Intensive Care Units , Pneumonia/epidemiology , Oxygen
5.
Baruch, Joaquin, Rojek, Amanda, Kartsonaki, Christiana, Vijayaraghavan, Bharath K. T.; Gonçalves, Bronner P.; Pritchard, Mark G.; Merson, Laura, Dunning, Jake, Hall, Matthew, Sigfrid, Louise, Citarella, Barbara W.; Murthy, Srinivas, Yeabah, Trokon O.; Olliaro, Piero, Abbas, Ali, Abdukahil, Sheryl Ann, Abdulkadir, Nurul Najmee, Abe, Ryuzo, Abel, Laurent, Absil, Lara, Acharya, Subhash, Acker, Andrew, Adam, Elisabeth, Adrião, Diana, Al Ageel, Saleh, Ahmed, Shakeel, Ainscough, Kate, Airlangga, Eka, Aisa, Tharwat, Hssain, Ali Ait, Tamlihat, Younes Ait, Akimoto, Takako, Akmal, Ernita, Al Qasim, Eman, Alalqam, Razi, Alberti, Angela, Al‐dabbous, Tala, Alegesan, Senthilkumar, Alegre, Cynthia, Alessi, Marta, Alex, Beatrice, Alexandre, Kévin, Al‐Fares, Abdulrahman, Alfoudri, Huda, Ali, Imran, Ali, Adam, Shah, Naseem Ali, Alidjnou, Kazali Enagnon, Aliudin, Jeffrey, Alkhafajee, Qabas, Allavena, Clotilde, Allou, Nathalie, Altaf, Aneela, Alves, João, Alves, Rita, Alves, João Melo, Amaral, Maria, Amira, Nur, Ampaw, Phoebe, Andini, Roberto, Andréjak, Claire, Angheben, Andrea, Angoulvant, François, Ansart, Séverine, Anthonidass, Sivanesen, Antonelli, Massimo, de Brito, Carlos Alexandre Antunes, Apriyana, Ardiyan, Arabi, Yaseen, Aragao, Irene, Araujo, Carolline, Arcadipane, Antonio, Archambault, Patrick, Arenz, Lukas, Arlet, Jean‐Benoît, Arora, Lovkesh, Arora, Rakesh, Artaud‐Macari, Elise, Aryal, Diptesh, Asensio, Angel, Ashraf, Muhammad, Asif, Namra, Asim, Mohammad, Assie, Jean Baptiste, Asyraf, Amirul, Atique, Anika, Attanyake, A. M. Udara Lakshan, Auchabie, Johann, Aumaitre, Hugues, Auvet, Adrien, Axelsen, Eyvind W.; Azemar, Laurène, Azoulay, Cecile, Bach, Benjamin, Bachelet, Delphine, Badr, Claudine, Bævre‐Jensen, Roar, Baig, Nadia, Baillie, J. Kenneth, Baird, J. Kevin, Bak, Erica, Bakakos, Agamemnon, Bakar, Nazreen Abu, Bal, Andriy, Balakrishnan, Mohanaprasanth, Balan, Valeria, Bani‐Sadr, Firouzé, Barbalho, Renata, Barbosa, Nicholas Yuri, Barclay, Wendy S.; Barnett, Saef Umar, Barnikel, Michaela, Barrasa, Helena, Barrelet, Audrey, Barrigoto, Cleide, Bartoli, Marie, Baruch, Joaquín, Bashir, Mustehan, Basmaci, Romain, Basri, Muhammad Fadhli Hassin, Battaglini, Denise, Bauer, Jules, Rincon, Diego Fernando Bautista, Dow, Denisse Bazan, Beane, Abigail, Bedossa, Alexandra, Bee, Ker Hong, Begum, Husna, Behilill, Sylvie, Beishuizen, Albertus, Beljantsev, Aleksandr, Bellemare, David, Beltrame, Anna, Beltrão, Beatriz Amorim, Beluze, Marine, Benech, Nicolas, Benjiman, Lionel Eric, Benkerrou, Dehbia, Bennett, Suzanne, Bento, Luís, Berdal, Jan‐Erik, Bergeaud, Delphine, Bergin, Hazel, Sobrino, José Luis Bernal, Bertoli, Giulia, Bertolino, Lorenzo, Bessis, Simon, Bevilcaqua, Sybille, Bezulier, Karine, Bhatt, Amar, Bhavsar, Krishna, Bianco, Claudia, Bidin, Farah Nadiah, Singh, Moirangthem Bikram, Humaid, Felwa Bin, Kamarudin, Mohd Nazlin Bin, Bissuel, François, Bitker, Laurent, Bitton, Jonathan, Blanco‐Schweizer, Pablo, Blier, Catherine, Bloos, Frank, Blot, Mathieu, Boccia, Filomena, Bodenes, Laetitia, Bogaarts, Alice, Bogaert, Debby, Boivin, Anne‐Hélène, Bolze, Pierre‐Adrien, Bompart, François, Bonfasius, Aurelius, Borges, Diogo, Borie, Raphaël, Bosse, Hans Martin, Botelho‐Nevers, Elisabeth, Bouadma, Lila, Bouchaud, Olivier, Bouchez, Sabelline, Bouhmani, Dounia, Bouhour, Damien, Bouiller, Kévin, Bouillet, Laurence, Bouisse, Camile, Boureau, Anne‐Sophie, Bourke, John, Bouscambert, Maude, Bousquet, Aurore, Bouziotis, Jason, Boxma, Bianca, Boyer‐Besseyre, Marielle, Boylan, Maria, Bozza, Fernando Augusto, Braconnier, Axelle, Braga, Cynthia, Brandenburger, Timo, Monteiro, Filipa Brás, Brazzi, Luca, Breen, Patrick, Breen, Dorothy, Breen, Patrick, Brickell, Kathy, Browne, Shaunagh, Browne, Alex, Brozzi, Nicolas, Brunvoll, Sonja Hjellegjerde, Brusse‐Keizer, Marjolein, Buchtele, Nina, Buesaquillo, Christian, Bugaeva, Polina, Buisson, Marielle, Buonsenso, Danilo, Burhan, Erlina, Burrell, Aidan, Bustos, Ingrid G.; Butnaru, Denis, Cabie, André, Cabral, Susana, Caceres, Eder, Cadoz, Cyril, Calligy, Kate, Calvache, Jose Andres, Camões, João, Campana, Valentine, Campbell, Paul, Campisi, Josie, Canepa, Cecilia, Cantero, Mireia, Caraux‐Paz, Pauline, Cárcel, Sheila, Cardellino, Chiara Simona, Cardoso, Sofia, Cardoso, Filipe, Cardoso, Filipa, Cardoso, Nelson, Carelli, Simone, Carlier, Nicolas, Carmoi, Thierry, Carney, Gayle, Carqueja, Inês, Carret, Marie‐Christine, Carrier, François Martin, Carroll, Ida, Carson, Gail, Casanova, Maire‐Laure, Cascão, Mariana, Casey, Siobhan, Casimiro, José, Cassandra, Bailey, Castañeda, Silvia, Castanheira, Nidyanara, Castor‐Alexandre, Guylaine, Castrillón, Henry, Castro, Ivo, Catarino, Ana, Catherine, François‐Xavier, Cattaneo, Paolo, Cavalin, Roberta, Cavalli, Giulio Giovanni, Cavayas, Alexandros, Ceccato, Adrian, Cervantes‐Gonzalez, Minerva, Chair, Anissa, Chakveatze, Catherine, Chan, Adrienne, Chand, Meera, Auger, Christelle Chantalat, Chapplain, Jean‐Marc, Chas, Julie, Chatterjee, Allegra, Chaudry, Mobin, Iñiguez, Jonathan Samuel Chávez, Chen, Anjellica, Chen, Yih‐Sharng, Cheng, Matthew Pellan, Cheret, Antoine, Chiarabini, Thibault, Chica, Julian, Chidambaram, Suresh Kumar, Tho, Leong Chin, Chirouze, Catherine, Chiumello, Davide, Cho, Sung‐Min, Cholley, Bernard, Chopin, Marie‐Charlotte, Chow, Ting Soo, Chow, Yock Ping, Chua, Jonathan, Chua, Hiu Jian, Cidade, Jose Pedro, Herreros, José Miguel Cisneros, Citarella, Barbara Wanjiru, Ciullo, Anna, Clarke, Jennifer, Clarke, Emma, Granado, Rolando Claure‐Del, Clohisey, Sara, Cobb, Perren J.; Codan, Cassidy, Cody, Caitriona, Coelho, Alexandra, Coles, Megan, Colin, Gwenhaël, Collins, Michael, Colombo, Sebastiano Maria, Combs, Pamela, Connor, Marie, Conrad, Anne, Contreras, Sofía, Conway, Elaine, Cooke, Graham S.; Copland, Mary, Cordel, Hugues, Corley, Amanda, Cornelis, Sabine, Cornet, Alexander Daniel, Corpuz, Arianne Joy, Cortegiani, Andrea, Corvaisier, Grégory, Costigan, Emma, Couffignal, Camille, Couffin‐Cadiergues, Sandrine, Courtois, Roxane, Cousse, Stéphanie, Cregan, Rachel, Croonen, Sabine, Crowl, Gloria, Crump, Jonathan, Cruz, Claudina, Bermúdez, Juan Luis Cruz, Rojo, Jaime Cruz, Csete, Marc, Cullen, Ailbhe, Cummings, Matthew, Curley, Gerard, Curlier, Elodie, Curran, Colleen, Custodio, Paula, da Silva Filipe, Ana, Da Silveira, Charlene, Dabaliz, Al‐Awwab, Dagens, Andrew, Dahl, John Arne, Dahly, Darren, Dalton, Heidi, Dalton, Jo, Daly, Seamus, Daneman, Nick, Daniel, Corinne, Dankwa, Emmanuelle A.; Dantas, Jorge, D'Aragon, Frédérick, de Loughry, Gillian, de Mendoza, Diego, De Montmollin, Etienne, de Oliveira França, Rafael Freitas, de Pinho Oliveira, Ana Isabel, De Rosa, Rosanna, De Rose, Cristina, de Silva, Thushan, de Vries, Peter, Deacon, Jillian, Dean, David, Debard, Alexa, Debray, Marie‐Pierre, DeCastro, Nathalie, Dechert, William, Deconninck, Lauren, Decours, Romain, Defous, Eve, Delacroix, Isabelle, Delaveuve, Eric, Delavigne, Karen, Delfos, Nathalie M.; Deligiannis, Ionna, Dell'Amore, Andrea, Delmas, Christelle, Delobel, Pierre, Delsing, Corine, Demonchy, Elisa, Denis, Emmanuelle, Deplanque, Dominique, Depuydt, Pieter, Desai, Mehul, Descamps, Diane, Desvallées, Mathilde, Dewayanti, Santi, Dhanger, Pathik, Diallo, Alpha, Diamantis, Sylvain, Dias, André, Diaz, Juan Jose, Diaz, Priscila, Diaz, Rodrigo, Didier, Kévin, Diehl, Jean‐Luc, Dieperink, Wim, Dimet, Jérôme, Dinot, Vincent, Diop, Fara, Diouf, Alphonsine, Dishon, Yael, Djossou, Félix, Docherty, Annemarie B.; Doherty, Helen, Dondorp, Arjen M.; Donnelly, Maria, Donnelly, Christl A.; Donohue, Sean, Donohue, Yoann, Donohue, Chloe, Doran, Peter, Dorival, Céline, D'Ortenzio, Eric, Douglas, James Joshua, Douma, Renee, Dournon, Nathalie, Downer, Triona, Downey, Joanne, Downing, Mark, Drake, Tom, Driscoll, Aoife, Dryden, Murray, Fonseca, Claudio Duarte, Dubee, Vincent, Dubos, François, Ducancelle, Alexandre, Duculan, Toni, Dudman, Susanne, Duggal, Abhijit, Dunand, Paul, Dunning, Jake, Duplaix, Mathilde, Durante‐Mangoni, Emanuele, Durham, Lucian, Dussol, Bertrand, Duthoit, Juliette, Duval, Xavier, Dyrhol‐Riise, Anne Margarita, Ean, Sim Choon, Echeverria‐Villalobos, Marco, Egan, Siobhan, Eggesbø, Linn Margrete, Eira, Carla, El Sanharawi, Mohammed, Elapavaluru, Subbarao, Elharrar, Brigitte, Ellerbroek, Jacobien, Ellingjord‐Dale, Merete, Eloy, Philippine, Elshazly, Tarek, Elyazar, Iqbal, Enderle, Isabelle, Endo, Tomoyuki, Eng, Chan Chee, Engelmann, Ilka, Enouf, Vincent, Epaulard, Olivier, Escher, Martina, Esperatti, Mariano, Esperou, Hélène, Esposito‐Farese, Marina, Estevão, João, Etienne, Manuel, Ettalhaoui, Nadia, Everding, Anna Greti, Evers, Mirjam, Fabre, Marc, Fabre, Isabelle, Faheem, Amna, Fahy, Arabella, Fairfield, Cameron J.; Fakar, Zul, Fareed, Komal, Faria, Pedro, Farooq, Ahmed, Fateena, Hanan, Fatoni, Arie Zainul, Faure, Karine, Favory, Raphaël, Fayed, Mohamed, Feely, Niamh, Feeney, Laura, Fernandes, Jorge, Fernandes, Marília Andreia, Fernandes, Susana, Ferrand, François‐Xavier, Devouge, Eglantine Ferrand, Ferrão, Joana, Ferraz, Mário, Ferreira, Sílvia, Ferreira, Isabel, Ferreira, Benigno, Ferrer‐Roca, Ricard, Ferriere, Nicolas, Ficko, Céline, Figueiredo‐Mello, Claudia, Finlayson, William, Fiorda, Juan, Flament, Thomas, Flateau, Clara, Fletcher, Tom, Florio, Letizia Lucia, Flynn, Deirdre, Foley, Claire, Foley, Jean, Fomin, Victor, Fonseca, Tatiana, Fontela, Patricia, Forsyth, Simon, Foster, Denise, Foti, Giuseppe, Fourn, Erwan, Fowler, Robert A.; Fraher, Marianne, Franch‐Llasat, Diego, Fraser, John F.; Fraser, Christophe, Freire, Marcela Vieira, Ribeiro, Ana Freitas, Friedrich, Caren, Fry, Stéphanie, Fuentes, Nora, Fukuda, Masahiro, Argin, G.; Gaborieau, Valérie, Gaci, Rostane, Gagliardi, Massimo, Gagnard, Jean‐Charles, Gagneux‐Brunon, Amandine, Gaião, Sérgio, Skeie, Linda Gail, Gallagher, Phil, Gamble, Carrol, Gani, Yasmin, Garan, Arthur, Garcia, Rebekha, Barrio, Noelia García, Garcia‐Diaz, Julia, Garcia‐Gallo, Esteban, Garimella, Navya, Garot, Denis, Garrait, Valérie, Gauli, Basanta, Gault, Nathalie, Gavin, Aisling, Gavrylov, Anatoliy, Gaymard, Alexandre, Gebauer, Johannes, Geraud, Eva, Morlaes, Louis Gerbaud, Germano, Nuno, Ghisulal, Praveen Kumar, Ghosn, Jade, Giani, Marco, Gibson, Jess, Gigante, Tristan, Gilg, Morgane, Gilroy, Elaine, Giordano, Guillermo, Girvan, Michelle, Gissot, Valérie, Glikman, Daniel, Glybochko, Petr, Gnall, Eric, Goco, Geraldine, Goehringer, François, Goepel, Siri, Goffard, Jean‐Christophe, Goh, Jin Yi, Golob, Jonathan, Gomez, Kyle, Gómez‐Junyent, Joan, Gominet, Marie, Gonçalves, Bronner P.; Gonzalez, Alicia, Gordon, Patricia, Gorenne, Isabelle, Goubert, Laure, Goujard, Cécile, Goulenok, Tiphaine, Grable, Margarite, Graf, Jeronimo, Grandin, Edward Wilson, Granier, Pascal, Grasselli, Giacomo, Green, Christopher A.; Greene, Courtney, Greenhalf, William, Greffe, Segolène, Grieco, Domenico Luca, Griffee, Matthew, Griffiths, Fiona, Grigoras, Ioana, Groenendijk, Albert, Lordemann, Anja Grosse, Gruner, Heidi, Gu, Yusing, Guedj, Jérémie, Guego, Martin, Guellec, Dewi, Guerguerian, Anne‐Marie, Guerreiro, Daniela, Guery, Romain, Guillaumot, Anne, Guilleminault, Laurent, Guimarães de Castro, Maisa, Guimard, Thomas, Haalboom, Marieke, Haber, Daniel, Habraken, Hannah, Hachemi, Ali, Hackmann, Amy, Hadri, Nadir, Haidri, Fakhir, Hakak, Sheeba, Hall, Adam, Hall, Matthew, Halpin, Sophie, Hameed, Jawad, Hamer, Ansley, Hamers, Raph L.; Hamidfar, Rebecca, Hammarström, Bato, Hammond, Terese, Han, Lim Yuen, Haniffa, Rashan, Hao, Kok Wei, Hardwick, Hayley, Harrison, Ewen M.; Harrison, Janet, Harrison, Samuel Bernard Ekow, Hartman, Alan, Hasan, Mohd Shahnaz, Hashmi, Junaid, Hayat, Muhammad, Hayes, Ailbhe, Hays, Leanne, Heerman, Jan, Heggelund, Lars, Hendry, Ross, Hennessy, Martina, Henriquez‐Trujillo, Aquiles, Hentzien, Maxime, Hernandez‐Montfort, Jaime, Hershey, Andrew, Hesstvedt, Liv, Hidayah, Astarini, Higgins, Eibhilin, Higgins, Dawn, Higgins, Rupert, Hinchion, Rita, Hinton, Samuel, Hiraiwa, Hiroaki, Hirkani, Haider, Hitoto, Hikombo, Ho, Yi Bin, Ho, Antonia, Hoctin, Alexandre, Hoffmann, Isabelle, Hoh, Wei Han, Hoiting, Oscar, Holt, Rebecca, Holter, Jan Cato, Horby, Peter, Horcajada, Juan Pablo, Hoshino, Koji, Houas, Ikram, Hough, Catherine L.; Houltham, Stuart, Hsu, Jimmy Ming‐Yang, Hulot, Jean‐Sébastien, Huo, Stella, Hurd, Abby, Hussain, Iqbal, Ijaz, Samreen, Illes, Hajnal‐Gabriela, Imbert, Patrick, Imran, Mohammad, Sikander, Rana Imran, Imtiaz, Aftab, Inácio, Hugo, Dominguez, Carmen Infante, Ing, Yun Sii, Iosifidis, Elias, Ippolito, Mariachiara, Isgett, Sarah, Isidoro, Tiago, Ismail, Nadiah, Isnard, Margaux, Istre, Mette Stausland, Itai, Junji, Ivulich, Daniel, Jaafar, Danielle, Jaafoura, Salma, Jabot, Julien, Jackson, Clare, Jamieson, Nina, Jaquet, Pierre, Jaud‐Fischer, Coline, Jaureguiberry, Stéphane, Jaworsky, Denise, Jego, Florence, Jelani, Anilawati Mat, Jenum, Synne, Jimbo‐Sotomayor, Ruth, Joe, Ong Yiaw, Jorge García, Ruth N.; Jørgensen, Silje Bakken, Joseph, Cédric, Joseph, Mark, Joshi, Swosti, Jourdain, Mercé, Jouvet, Philippe, Jung, Hanna, Jung, Anna, Juzar, Dafsah, Kafif, Ouifiya, Kaguelidou, Florentia, Kaisbain, Neerusha, Kaleesvran, Thavamany, Kali, Sabina, Kalicinska, Alina, Kalleberg, Karl Trygve, Kalomoiri, Smaragdi, Kamaluddin, Muhammad Aisar Ayadi, Kamaruddin, Zul Amali Che, Kamarudin, Nadiah, Kamineni, Kavita, Kandamby, Darshana Hewa, Kandel, Chris, Kang, Kong Yeow, Kanwal, Darakhshan, Karpayah, Pratap, Kartsonaki, Christiana, Kasugai, Daisuke, Kataria, Anant, Katz, Kevin, Kaur, Aasmine, Kay, Christy, Keane, Hannah, Keating, Seán, Kedia, Pulak, Kelly, Claire, Kelly, Yvelynne, Kelly, Andrea, Kelly, Niamh, Kelly, Aoife, Kelly, Sadie, Kelsey, Maeve, Kennedy, Ryan, Kennon, Kalynn, Kernan, Maeve, Kerroumi, Younes, Keshav, Sharma, Khalid, Imrana, Khalid, Osama, Khalil, Antoine, Khan, Coralie, Khan, Irfan, Khan, Quratul Ain, Khanal, Sushil, Khatak, Abid, Khawaja, Amin, Kherajani, Krish, Kho, Michelle E.; Khoo, Ryan, Khoo, Denisa, Khoo, Saye, Khoso, Nasir, Kiat, Khor How, Kida, Yuri, Kiiza, Peter, Granerud, Beathe Kiland, Kildal, Anders Benjamin, Kim, Jae Burm, Kimmoun, Antoine, Kindgen‐Milles, Detlef, King, Alexander, Kitamura, Nobuya, Kjetland, Eyrun Floerecke Kjetland, Klenerman, Paul, Klont, Rob, Bekken, Gry Kloumann, Knight, Stephen R.; Kobbe, Robin, Kodippily, Chamira, Vasconcelos, Malte Kohns, Koirala, Sabin, Komatsu, Mamoru, Kosgei, Caroline, Kpangon, Arsène, Krawczyk, Karolina, Krishnan, Vinothini, Krishnan, Sudhir, Kruglova, Oksana, Kumar, Ganesh, Kumar, Deepali, Kumar, Mukesh, Vecham, Pavan Kumar, Kuriakose, Dinesh, Kurtzman, Ethan, Kutsogiannis, Demetrios, Kutsyna, Galyna, Kyriakoulis, Konstantinos, Lachatre, Marie, Lacoste, Marie, Laffey, John G.; Lagrange, Marie, Laine, Fabrice, Lairez, Olivier, Lakhey, Sanjay, Lalueza, Antonio, Lambert, Marc, Lamontagne, François, Langelot‐Richard, Marie, Langlois, Vincent, Lantang, Eka Yudha, Lanza, Marina, Laouénan, Cédric, Laribi, Samira, Lariviere, Delphine, Lasry, Stéphane, Lath, Sakshi, Latif, Naveed, Launay, Odile, Laureillard, Didier, Lavie‐Badie, Yoan, Law, Andy, Lawrence, Teresa, Lawrence, Cassie, Le, Minh, Le Bihan, Clément, Le Bris, Cyril, Le Falher, Georges, Le Fevre, Lucie, Le Hingrat, Quentin, Le Maréchal, Marion, Le Mestre, Soizic, Le Moal, Gwenaël, Le Moing, Vincent, Le Nagard, Hervé, Le Turnier, Paul, Leal, Ema, Santos, Marta Leal, Lee, Heng Gee, Lee, Biing Horng, Lee, Yi Lin, Lee, Todd C.; Lee, James, Lee, Jennifer, Lee, Su Hwan, Leeming, Gary, Lefebvre, Laurent, Lefebvre, Bénédicte, Lefèvre, Benjamin, LeGac, Sylvie, Lelievre, Jean‐Daniel, Lellouche, François, Lemaignen, Adrien, Lemee, Véronique, Lemeur, Anthony, Lemmink, Gretchen, Lene, Ha Sha, Lennon, Jenny, León, Rafael, Leone, Marc, Leone, Michela, Lepiller, Quentin, Lescure, François‐Xavier, Lesens, Olivier, Lesouhaitier, Mathieu, Lester‐Grant, Amy, Levy, Yves, Levy, Bruno, Levy‐Marchal, Claire, Lewandowska, Katarzyna, L'Her, Erwan, Bassi, Gianluigi Li, Liang, Janet, Liaquat, Ali, Liegeon, Geoffrey, Lim, Kah Chuan, Lim, Wei Shen, Lima, Chantre, Lina, Lim, Lina, Bruno, Lind, Andreas, Lingad, Maja Katherine, Lingas, Guillaume, Lion‐Daolio, Sylvie, Lissauer, Samantha, Liu, Keibun, Livrozet, Marine, Lizotte, Patricia, Loforte, Antonio, Lolong, Navy, Loon, Leong Chee, Lopes, Diogo, Lopez‐Colon, Dalia, Lopez‐Revilla, Jose W.; Loschner, Anthony L.; Loubet, Paul, Loufti, Bouchra, Louis, Guillame, Lourenco, Silvia, Lovelace‐Macon, Lara, Low, Lee Lee, Lowik, Marije, Loy, Jia Shyi, Lucet, Jean Christophe, Bermejo, Carlos Lumbreras, Luna, Carlos M.; Lungu, Olguta, Luong, Liem, Luque, Nestor, Luton, Dominique, Lwin, Nilar, Lyons, Ruth, Maasikas, Olavi, Mabiala, Oryane, Machado, Moïse, Macheda, Gabriel, Madiha, Hashmi, Maestro de la Calle, Guillermo, Mahieu, Rafael, Mahy, Sophie, Maia, Ana Raquel, Maier, Lars S.; Maillet, Mylène, Maitre, Thomas, Malfertheiner, Maximilian, Malik, Nadia, Mallon, Paddy, Maltez, Fernando, Malvy, Denis, Manda, Victoria, Mandelbrot, Laurent, Manetta, Frank, Mankikian, Julie, Manning, Edmund, Manuel, Aldric, Sant'Ana Malaque, Ceila Maria, Marino, Flávio, Marino, Daniel, Markowicz, Samuel, Maroun Eid, Charbel, Marques, Ana, Marquis, Catherine, Marsh, Brian, Marsh, Laura, Marshal, Megan, Marshall, John, Martelli, Celina Turchi, Martin, Dori‐Ann, Martin, Emily, Martin‐Blondel, Guillaume, Martin‐Loeches, Ignacio, Martinot, Martin, Martin‐Quiros, Alejandro, Martins, João, Martins, Ana, Martins, Nuno, Rego, Caroline Martins, Martucci, Gennaro, Martynenko, Olga, Marwali, Eva Miranda, Marzukie, Marsilla, Maslove, David, Mason, Sabina, Masood, Sobia, Nor, Basri Mat, Matan, Moshe, Mathew, Meghena, Mathieu, Daniel, Mattei, Mathieu, Matulevics, Romans, Maulin, Laurence, Maxwell, Michael, Maynar, Javier, Mazzoni, Thierry, Evoy, Natalie Mc, Sweeney, Lisa Mc, McArthur, Colin, McArthur, Colin, McCarthy, Anne, McCarthy, Aine, McCloskey, Colin, McConnochie, Rachael, McDermott, Sherry, McDonald, Sarah E.; McElroy, Aine, McElwee, Samuel, McEneany, Victoria, McGeer, Allison, McKay, Chris, McKeown, Johnny, McLean, Kenneth A.; McNally, Paul, McNicholas, Bairbre, McPartlan, Elaine, Meaney, Edel, Mear‐Passard, Cécile, Mechlin, Maggie, Meher, Maqsood, Mehkri, Omar, Mele, Ferruccio, Melo, Luis, Memon, Kashif, Mendes, Joao Joao, Menkiti, Ogechukwu, Menon, Kusum, Mentré, France, Mentzer, Alexander J.; Mercier, Noémie, Mercier, Emmanuelle, Merckx, Antoine, Mergeay‐Fabre, Mayka, Mergler, Blake, Merson, Laura, Mesquita, António, Meta, Roberta, Metwally, Osama, Meybeck, Agnès, Meyer, Dan, Meynert, Alison M.; Meysonnier, Vanina, Meziane, Amina, Mezidi, Mehdi, Michelanglei, Céline, Michelet, Isabelle, Mihelis, Efstathia, Mihnovit, Vladislav, Miranda‐Maldonado, Hugo, Misnan, Nor Arisah, Mohamed, Tahira Jamal, Mohamed, Nik Nur Eliza, Moin, Asma, Molina, David, Molinos, Elena, Molloy, Brenda, Mone, Mary, Monteiro, Agostinho, Montes, Claudia, Montrucchio, Giorgia, Moore, Shona C.; Moore, Sarah, Cely, Lina Morales, Moro, Lucia, Morton, Ben, Motherway, Catherine, Motos, Ana, Mouquet, Hugo, Perrot, Clara Mouton, Moyet, Julien, Mudara, Caroline, Mufti, Aisha Kalsoom, Muh, Ng Yong, Muhamad, Dzawani, Mullaert, Jimmy, Müller, Fredrik, Müller, Karl Erik, Munblit, Daniel, Muneeb, Syed, Munir, Nadeem, Munshi, Laveena, Murphy, Aisling, Murphy, Lorna, Murphy, Aisling, Murris, Marlène, Murthy, Srinivas, Musaab, Himed, Muvindi, Himasha, Muyandy, Gugapriyaa, Myrodia, Dimitra Melia, Mohd‐Hanafiah, Farah Nadia, Nagpal, Dave, Nagrebetsky, Alex, Narasimhan, Mangala, Narayanan, Nageswaran, Khan, Rashid Nasim, Nazerali‐Maitland, Alasdair, Neant, Nadège, Neb, Holger, Nekliudov, Nikita, Nelwan, Erni, Neto, Raul, Neumann, Emily, Ng, Pauline Yeung, Ng, Wing Yiu, Nghi, Anthony, Nguyen, Duc, Choileain, Orna Ni, Leathlobhair, Niamh Ni, Nichol, Alistair, Nitayavardhana, Prompak, Nonas, Stephanie, Noordin, Nurul Amani Mohd, Noret, Marion, Norharizam, Nurul Faten Izzati, Norman, Lisa, Notari, Alessandra, Noursadeghi, Mahdad, Nowicka, Karolina, Nowinski, Adam, Nseir, Saad, Nunez, Jose I.; Nurnaningsih, Nurnaningsih, Nusantara, Dwi Utomo, Nyamankolly, Elsa, Nygaard, Anders Benteson, Brien, Fionnuala O.; Callaghan, Annmarie O.; O'Callaghan, Annmarie, Occhipinti, Giovanna, Oconnor, Derbrenn, O'Donnell, Max, Ogston, Tawnya, Ogura, Takayuki, Oh, Tak‐Hyuk, O'Halloran, Sophie, O'Hearn, Katie, Ohshimo, Shinichiro, Oldakowska, Agnieszka, Oliveira, João, Oliveira, Larissa, Olliaro, Piero L.; Ong, Jee Yan, Ong, David S. Y.; Oosthuyzen, Wilna, Opavsky, Anne, Openshaw, Peter, Orakzai, Saijad, Orozco‐Chamorro, Claudia Milena, Ortoleva, Jamel, Osatnik, Javier, O'Shea, Linda, O'Sullivan, Miriam, Othman, Siti Zubaidah, Ouamara, Nadia, Ouissa, Rachida, Oziol, Eric, Pagadoy, Maïder, Pages, Justine, Palacios, Mario, Palacios, Amanda, Palmarini, Massimo, Panarello, Giovanna, Panda, Prasan Kumar, Paneru, Hem, Pang, Lai Hui, Panigada, Mauro, Pansu, Nathalie, Papadopoulos, Aurélie, Parke, Rachael, Parker, Melissa, Parra, Briseida, Pasha, Taha, Pasquier, Jérémie, Pastene, Bruno, Patauner, Fabian, Patel, Drashti, Pathmanathan, Mohan Dass, Patrão, Luís, Patricio, Patricia, Patrier, Juliette, Patterson, Lisa, Pattnaik, Rajyabardhan, Paul, Mical, Paul, Christelle, Paulos, Jorge, Paxton, William A.; Payen, Jean‐François, Peariasamy, Kalaiarasu, Jiménez, Miguel Pedrera, Peek, Giles J.; Peelman, Florent, Peiffer‐Smadja, Nathan, Peigne, Vincent, Pejkovska, Mare, Pelosi, Paolo, Peltan, Ithan D.; Pereira, Rui, Perez, Daniel, Periel, Luis, Perpoint, Thomas, Pesenti, Antonio, Pestre, Vincent, Petrou, Lenka, Petrovic, Michele, Petrov‐Sanchez, Ventzislava, Pettersen, Frank Olav, Peytavin, Gilles, Pharand, Scott, Picard, Walter, Picone, Olivier, de Piero, Maria, Pierobon, Carola, Piersma, Djura, Pimentel, Carlos, Pinto, Raquel, Pires, Catarina, Pironneau, Isabelle, Piroth, Lionel, Pitaloka, Ayodhia, Pius, Riinu, Plantier, Laurent, Png, Hon Shen, Poissy, Julien, Pokeerbux, Ryadh, Pokorska‐Spiewak, Maria, Poli, Sergio, Pollakis, Georgios, Ponscarme, Diane, Popielska, Jolanta, Porto, Diego Bastos, Post, Andra‐Maris, Postma, Douwe F.; Povoa, Pedro, Póvoas, Diana, Powis, Jeff, Prapa, Sofia, Preau, Sébastien, Prebensen, Christian, Preiser, Jean‐Charles, Prinssen, Anton, Pritchard, Mark G.; Priyadarshani, Gamage Dona Dilanthi, Proença, Lucia, Pudota, Sravya, Puéchal, Oriane, Semedi, Bambang Pujo, Pulicken, Mathew, Purcell, Gregory, Quesada, Luisa, Quinones‐Cardona, Vilmaris, González, Víctor Quirós, Quist‐Paulsen, Else, Quraishi, Mohammed, Rabaa, Maia, Rabaud, Christian, Rabindrarajan, Ebenezer, Rafael, Aldo, Rafiq, Marie, Rahardjani, Mutia, Rahman, Rozanah Abd, Rahman, Ahmad Kashfi Haji Ab, Rahutullah, Arsalan, Rainieri, Fernando, Rajahram, Giri Shan, Ramachandran, Pratheema, Ramakrishnan, Nagarajan, Ramli, Ahmad Afiq, Rammaert, Blandine, Ramos, Grazielle Viana, Rana, Asim, Rangappa, Rajavardhan, Ranjan, Ritika, Rapp, Christophe, Rashan, Aasiyah, Rashan, Thalha, Rasheed, Ghulam, Rasmin, Menaldi, Rätsep, Indrek, Rau, Cornelius, Ravi, Tharmini, Raza, Ali, Real, Andre, Rebaudet, Stanislas, Redl, Sarah, Reeve, Brenda, Rehman, Attaur, Reid, Liadain, Reikvam, Dag Henrik, Reis, Renato, Rello, Jordi, Remppis, Jonathan, Remy, Martine, Ren, Hongru, Renk, Hanna, Resseguier, Anne‐Sophie, Revest, Matthieu, Rewa, Oleksa, Reyes, Luis Felipe, Reyes, Tiago, Ribeiro, Maria Ines, Ricchiuto, Antonia, Richardson, David, Richardson, Denise, Richier, Laurent, Ridzuan, Siti Nurul Atikah Ahmad, Riera, Jordi, Rios, Ana L.; Rishu, Asgar, Rispal, Patrick, Risso, Karine, Nuñez, Maria Angelica Rivera, Rizer, Nicholas, Robba, Chiara, Roberto, André, Roberts, Stephanie, Robertson, David L.; Robineau, Olivier, Roche‐Campo, Ferran, Rodari, Paola, Rodeia, Simão, Abreu, Julia Rodriguez, Roessler, Bernhard, Roger, Pierre‐Marie, Roger, Claire, Roilides, Emmanuel, Rojek, Amanda, Romaru, Juliette, Roncon‐Albuquerque, Roberto, Roriz, Mélanie, Rosa‐Calatrava, Manuel, Rose, Michael, Rosenberger, Dorothea, Roslan, Nurul Hidayah Mohammad, Rossanese, Andrea, Rossetti, Matteo, Rossignol, Bénédicte, Rossignol, Patrick, Rousset, Stella, Roy, Carine, Roze, Benoît, Rusmawatiningtyas, Desy, Russell, Clark D.; Ryan, Maria, Ryan, Maeve, Ryckaert, Steffi, Holten, Aleksander Rygh, Saba, Isabela, Sadaf, Sairah, Sadat, Musharaf, Sahraei, Valla, Saint‐Gilles, Maximilien, Sakiyalak, Pranya, Salahuddin, Nawal, Salazar, Leonardo, Saleem, Jodat, Sales, Gabriele, Sallaberry, Stéphane, Salmon Gandonniere, Charlotte, Salvator, Hélène, Sanchez, Olivier, Sanchez‐Miralles, Angel, Sancho‐Shimizu, Vanessa, Sandhu, Gyan, Sandhu, Zulfiqar, Sandrine, Pierre‐François, Sandulescu, Oana, Santos, Marlene, Sarfo‐Mensah, Shirley, Banheiro, Bruno Sarmento, Sarmiento, Iam Claire E.; Sarton, Benjamine, Satya, Ankana, Satyapriya, Sree, Satyawati, Rumaisah, Saviciute, Egle, Savvidou, Parthena, Saw, Yen Tsen, Schaffer, Justin, Schermer, Tjard, Scherpereel, Arnaud, Schneider, Marion, Schroll, Stephan, Schwameis, Michael, Schwartz, Gary, Scott, Janet T.; Scott‐Brown, James, Sedillot, Nicholas, Seitz, Tamara, Selvanayagam, Jaganathan, Selvarajoo, Mageswari, Semaille, Caroline, Semple, Malcolm G.; Senian, Rasidah Bt, Senneville, Eric, Sequeira, Filipa, Sequeira, Tânia, Neto, Ary Serpa, Balazote, Pablo Serrano, Shadowitz, Ellen, Shahidan, Syamin Asyraf, Shamsah, Mohammad, Shankar, Anuraj, Sharjeel, Shaikh, Sharma, Pratima, Shaw, Catherine A.; Shaw, Victoria, Sheharyar, Ashraf, Shetty, Rohan, Shetty, Rajesh Mohan, Shi, Haixia, Shiekh, Mohiuddin, Shime, Nobuaki, Shimizu, Keiki, Shrapnel, Sally, Shrestha, Pramesh Sundar, Shrestha, Shubha Kalyan, Shum, Hoi Ping, Mohammed, Nassima Si, Siang, Ng Yong, Sibiude, Jeanne, Siddiqui, Atif, Sigfrid, Louise, Sillaots, Piret, Silva, Catarina, Silva, Rogério, Silva, Maria Joao, Heng, Benedict Sim Lim, Sin, Wai Ching, Sinatti, Dario, Singh, Punam, Singh, Budha Charan, Sitompul, Pompini Agustina, Sivam, Karisha, Skogen, Vegard, Smith, Sue, Smood, Benjamin, Smyth, Coilin, Smyth, Michelle, Snacken, Morgane, So, Dominic, Soh, Tze Vee, Solberg, Lene Bergendal, Solomon, Joshua, Solomon, Tom, Somers, Emily, Sommet, Agnès, Song, Rima, Song, Myung Jin, Song, Tae, Chia, Jack Song, Sonntagbauer, Michael, Soom, Azlan Mat, Søraas, Arne, Søraas, Camilla Lund, Sotto, Alberto, Soum, Edouard, Sousa, Marta, Sousa, Ana Chora, Uva, Maria Sousa, Souza‐Dantas, Vicente, Sperry, Alexandra, Spinuzza, Elisabetta, Darshana, B. P. Sanka Ruwan Sri, Sriskandan, Shiranee, Stabler, Sarah, Staudinger, Thomas, Stecher, Stephanie‐Susanne, Steinsvik, Trude, Stienstra, Ymkje, Stiksrud, Birgitte, Stolz, Eva, Stone, Amy, Streinu‐Cercel, Adrian, Streinu‐Cercel, Anca, Stuart, David, Stuart, Ami, Subekti, Decy, Suen, Gabriel, Suen, Jacky Y.; Sultana, Asfia, Summers, Charlotte, Supic, Dubravka, Suppiah, Deepashankari, Surovcová, Magdalena, Suwarti, Suwarti, Svistunov, Andrey, Syahrin, Sarah, Syrigos, Konstantinos, Sztajnbok, Jaques, Szuldrzynski, Konstanty, Tabrizi, Shirin, Taccone, Fabio S.; Tagherset, Lysa, Taib, Shahdattul Mawarni, Talarek, Ewa, Taleb, Sara, Talsma, Jelmer, Tamisier, Renaud, Tampubolon, Maria Lawrensia, Tan, Kim Keat, Tan, Yan Chyi, Tanaka, Taku, Tanaka, Hiroyuki, Taniguchi, Hayato, Taqdees, Huda, Taqi, Arshad, Tardivon, Coralie, Tattevin, Pierre, Taufik, M. Azhari, Tawfik, Hassan, Tedder, Richard S.; Tee, Tze Yuan, Teixeira, João, Tejada, Sofia, Tellier, Marie‐Capucine, Teoh, Sze Kye, Teotonio, Vanessa, Téoulé, François, Terpstra, Pleun, Terrier, Olivier, Terzi, Nicolas, Tessier‐Grenier, Hubert, Tey, Adrian, Thabit, Alif Adlan Mohd, Thakur, Anand, Tham, Zhang Duan, Thangavelu, Suvintheran, Thibault, Vincent, Thiberville, Simon‐Djamel, Thill, Benoît, Thirumanickam, Jananee, Thompson, Shaun, Thomson, Emma C.; Thurai, Surain Raaj Thanga, Thwaites, Ryan S.; Tierney, Paul, Tieroshyn, Vadim, Timashev, Peter S.; Timsit, Jean‐François, Vijayaraghavan, Bharath Kumar Tirupakuzhi, Tissot, Noémie, Toh, Jordan Zhien Yang, Toki, Maria, Tonby, Kristian, Tonnii, Sia Loong, Torres, Margarida, Torres, Antoni, Santos‐Olmo, Rosario Maria Torres, Torres‐Zevallos, Hernando, Towers, Michael, Trapani, Tony, Treoux, Théo, Tromeur, Cécile, Trontzas, Ioannis, Trouillon, Tiffany, Truong, Jeanne, Tual, Christelle, Tubiana, Sarah, Tuite, Helen, Turmel, Jean‐Marie, Turtle, Lance C. W.; Tveita, Anders, Twardowski, Pawel, Uchiyama, Makoto, Udayanga, P. G. Ishara, Udy, Andrew, Ullrich, Roman, Uribe, Alberto, Usman, Asad.
Influenza and Other Respiratory Viruses ; 2022.
Article in English | Web of Science | ID: covidwho-2019369

ABSTRACT

Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe arid Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years;geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did riot meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.

6.
Front Med (Lausanne) ; 9: 930217, 2022.
Article in English | MEDLINE | ID: covidwho-1987507

ABSTRACT

Introduction: Neurological manifestations and complications in coronavirus disease-2019 (COVID-19) patients are frequent. Prior studies suggested a possible association between neurological complications and fatal outcome, as well as the existence of potential modifiable risk factors associated to their occurrence. Therefore, more information is needed regarding the incidence and type of neurological complications, risk factors, and associated outcomes in COVID-19. Methods: This is a pre-planned secondary analysis of the international multicenter observational study of the COVID-19 Critical Care Consortium (which collected data both retrospectively and prospectively from the beginning of COVID-19 pandemic) with the aim to describe neurological complications in critically ill COVID-19 patients and to assess the associated risk factors, and outcomes. Adult patients with confirmed COVID-19, admitted to Intensive Care Unit (ICU) will be considered for this analysis. Data collected in the COVID-19 Critical Care Consortium study includes patients' pre-admission characteristics, comorbidities, severity status, and type and severity of neurological complications. In-hospital mortality and neurological outcome were collected at discharge from ICU, and at 28-days. Ethics and Dissemination: The COVID-19 Critical Care Consortium main study and its amendments have been approved by the Regional Ethics Committee of participating sites. No further approval is required for this secondary analysis. Trial Registration Number: ACTRN12620000421932.

7.
Crit Care ; 25(1): 268, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1892224

ABSTRACT

BACKGROUND: Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. METHODS: We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with 'do-not-intubate' (DNI) orders. RESULTS: Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30-41%]. 26% [21-30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36-54%]. 23% [15-32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65-78%]. Oxygenation on admission was the main source of between-study heterogeneity. CONCLUSIONS: During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. REGISTRATION: PROSPERO, https://www.crd.york.ac.uk/prospero/ , CRD42020224788, December 11, 2020.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Distress Syndrome/therapy , COVID-19/mortality , Continuous Positive Airway Pressure , Hospital Mortality , Humans , Intensive Care Units , Intubation/statistics & numerical data , Observational Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/virology
8.
Eur Respir J ; 60(4)2022 10.
Article in English | MEDLINE | ID: covidwho-1775304

ABSTRACT

RATIONALE: Pulse glucocorticoid therapy is used in hyperinflammation related to coronavirus disease 2019 (COVID-19). We evaluated the efficacy and safety of pulse intravenous methylprednisolone in addition to standard treatment in COVID-19 pneumonia. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, 304 hospitalised patients with COVID-19 pneumonia were randomised to receive 1 g of methylprednisolone intravenously for three consecutive days or placebo in addition to standard dexamethasone. The primary outcome was the duration of patient hospitalisation, calculated as the time interval between randomisation and hospital discharge without the need for supplementary oxygen. The key secondary outcomes were survival free from invasive ventilation with orotracheal intubation and overall survival. RESULTS: Overall, 112 (75.4%) out of 151 patients in the pulse methylprednisolone arm and 111 (75.2%) of 150 in the placebo arm were discharged from hospital without oxygen within 30 days from randomisation. Median time to discharge was similar in both groups (15 days, 95% CI 13.0-17.0 days and 16 days, 95% CI 13.8-18.2 days, respectively; hazard ratio (HR) 0.92, 95% CI 0.71-1.20; p=0.528). No significant differences between pulse methylprednisolone and placebo arms were observed in terms of admission to intensive care unit with orotracheal intubation or death (20.0% versus 16.1%; HR 1.26, 95% CI 0.74-2.16; p=0.176) or overall mortality (10.0% versus 12.2%; HR 0.83, 95% CI 0.42-1.64; p=0.584). Serious adverse events occurred with similar frequency in the two groups. CONCLUSIONS: Methylprenisolone pulse therapy added to dexamethasone was not of benefit in patients with COVID-19 pneumonia.


Subject(s)
COVID-19 , Humans , COVID-19/drug therapy , SARS-CoV-2 , Methylprednisolone , Glucocorticoids , Double-Blind Method , Oxygen , Treatment Outcome
9.
Respir Res ; 23(1): 65, 2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753114

ABSTRACT

BACKGROUND: Long-term pulmonary sequelae following hospitalization for SARS-CoV-2 pneumonia is largely unclear. The aim of this study was to identify and characterise pulmonary sequelae caused by SARS-CoV-2 pneumonia at 12-month from discharge. METHODS: In this multicentre, prospective, observational study, patients hospitalised for SARS-CoV-2 pneumonia and without prior diagnosis of structural lung diseases were stratified by maximum ventilatory support ("oxygen only", "continuous positive airway pressure (CPAP)" and "invasive mechanical ventilation (IMV)") and followed up at 12 months from discharge. Pulmonary function tests and diffusion capacity for carbon monoxide (DLCO), 6 min walking test, high resolution CT (HRCT) scan, and modified Medical Research Council (mMRC) dyspnea scale were collected. RESULTS: Out of 287 patients hospitalized with SARS-CoV-2 pneumonia and followed up at 1 year, DLCO impairment, mainly of mild entity and improved with respect to the 6-month follow-up, was observed more frequently in the "oxygen only" and "IMV" group (53% and 49% of patients, respectively), compared to 29% in the "CPAP" group. Abnormalities at chest HRCT were found in 46%, 65% and 80% of cases in the "oxygen only", "CPAP" and "IMV" group, respectively. Non-fibrotic interstitial lung abnormalities, in particular reticulations and ground-glass attenuation, were the main finding, while honeycombing was found only in 1% of cases. Older patients and those requiring IMV were at higher risk of developing radiological pulmonary sequelae. Dyspnea evaluated through mMRC scale was reported by 35% of patients with no differences between groups, compared to 29% at 6-month follow-up. CONCLUSION: DLCO alteration and non-fibrotic interstitial lung abnormalities are common after 1 year from hospitalization due to SARS-CoV-2 pneumonia, particularly in older patients requiring higher ventilatory support. Studies with longer follow-ups are needed.


Subject(s)
COVID-19/complications , Lung Diseases/diagnosis , Lung Diseases/virology , Aged , COVID-19/diagnosis , COVID-19/therapy , Female , Follow-Up Studies , Hospitalization , Humans , Lung Diseases/therapy , Male , Middle Aged , Oxygen Inhalation Therapy , Prospective Studies , Respiration, Artificial , Respiratory Function Tests , Time Factors
10.
J Clin Med ; 11(6)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1742513

ABSTRACT

BACKGROUND: The interest in protective ventilation strategies and individualized approaches for patients with severe illness on veno venous extracorporeal support has increased in recent years. Wide heterogeneity exists among patients with COVID-19 related acute respiratory distress syndrome (C-ARDS) and ARDS from other etiologies (NC-ARDS). EIT is a useful tool for the accurate analysis of regional lung volume distribution and allows for a tailored ventilatory setting. The aim of this work is to retrospectively describe the results of EIT assessments performed in patients C-ARDS and NC-ARDS undergoing V-V ECMO support. METHODS: A clinical EIT-guided decremental PEEP trail was conducted for all patients included in the study and mechanically ventilated. RESULTS: 12 patients with C-ARDS and 12 patients with NC-ARDS were included in the study for a total of 13 and 18 EIT evaluations, respectively. No significant differences in arterial blood gas, respiratory parameters, and regional ventilation before and after the EIT exam were recorded. The subset of patients with NC-ARDS whose EIT exam led to PEEP modification was characterized by a lower baseline compliance compared with the C-ARDS group: 18 (16-28) vs. 27 (24-30) (p = 0.04). Overdistension significantly increased at higher steps only for the NC-ARDS group. A higher percentage of overdistension was described in patients with NC-ARDS when compared with patients with C-ARDS. CONCLUSIONS: EIT is feasible in patients with COVID-19-associated ARDS on veno-venous extracorporeal support and may help in tailoring the PEEP setting. Overall, severe COVID-19-related ARDS presents respiratory characteristics similar to severe "classical" NC-ARDS. However, C-ARDS is associated with a lower risk of overdistension at a higher PEEP level compared with NC-ARDS.

11.
Crit Care ; 26(1): 34, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1706840

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) has become an established rescue therapy for severe acute respiratory distress syndrome (ARDS) in several etiologies including influenza A H1N1 pneumonia. The benefit of receiving ECMO in coronavirus disease 2019 (COVID-19) is still uncertain. The aim of this analysis was to compare the outcome of patients who received veno-venous ECMO for COVID-19 and Influenza A H1N1 associated ARDS. METHODS: This was a multicenter retrospective cohort study including adults with ARDS, receiving ECMO for COVID-19 and influenza A H1N1 pneumonia between 2009 and 2021 in seven Italian ICU. The primary outcome was any-cause mortality at 60 days after ECMO initiation. We used a multivariable Cox model to estimate the difference in mortality accounting for patients' characteristics and treatment factors before ECMO was started. Secondary outcomes were mortality at 90 days, ICU and hospital length of stay and ECMO associated complications. RESULTS: Data from 308 patients with COVID-19 (N = 146) and H1N1 (N = 162) associated ARDS who had received ECMO support were included. The estimated cumulative mortality at 60 days after initiating ECMO was higher in COVID-19 (46%) than H1N1 (27%) patients (hazard ratio 1.76, 95% CI 1.17-2.46). When adjusting for confounders, specifically age and hospital length of stay before ECMO support, the hazard ratio decreased to 1.39, 95% CI 0.78-2.47. ICU and hospital length of stay, duration of ECMO and invasive mechanical ventilation and ECMO-associated hemorrhagic complications were higher in COVID-19 than H1N1 patients. CONCLUSION: In patients with ARDS who received ECMO, the observed unadjusted 60-day mortality was higher in cases of COVID-19 than H1N1 pneumonia. This difference in mortality was not significant after multivariable adjustment; older age and longer hospital length of stay before ECMO emerged as important covariates that could explain the observed difference. TRIAL REGISTRATION NUMBER: NCT05080933 , retrospectively registered.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Influenza A Virus, H1N1 Subtype , Influenza, Human , Respiratory Distress Syndrome , Adult , Aged , Humans , Influenza, Human/complications , Influenza, Human/therapy , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2
12.
Perfusion ; : 2676591211066805, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1643055

ABSTRACT

A 47-year-old man, with no medical history, was diagnosed with severe COVID-19 ARDS and pulmonary embolism. Venovenous extracorporeal membrane oxygenation (ECMO) was required for impossibility to deliver protective ventilation. The patient was weaned from ECMO after clinical improvement. An inferior vena cava filter was then positioned to prevent embolization from a persistent left femoral deep venous thrombosis. Two days after the ECMO removal, a large lesion of the tracheal posterior wall was diagnosed. Tracheal stenting was deemed necessary. ECMO support was then re-established, to safely perform the bronchoscopic procedure. Due to the presence of the inferior vena cava filter, the patient was cannulated via the right internal jugular vein with a double lumen ProtekDuo cannula. The patient was then weaned from ECMO support and invasive ventilation. The tracheal stent was removed after 40 days, showing a full recovery of the tracheal lesion. The patient was discharged home in good condition.

13.
Crit Care ; 26(1): 8, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1590188

ABSTRACT

BACKGROUND: Prone positioning (PP) reduces mortality of patients with acute respiratory distress syndrome (ARDS). The potential benefit of prone positioning maneuvers during venovenous extracorporeal membrane oxygenation (ECMO) is unknown. The aim of this study was to evaluate the association between the use of prone positioning during extracorporeal support and ICU mortality in a pooled population of patients from previous European cohort studies. METHODS: We performed a pooled individual patient data analysis of European cohort studies which compared patients treated with prone positioning during ECMO (Prone group) to "conventional" ECMO management (Supine group) in patients with severe ARDS. RESULTS: 889 patients from five studies were included. Unadjusted ICU mortality was 52.8% in the Supine Group and 40.8% in the Prone group. At a Cox multiple regression analysis PP during ECMO was not significantly associated with a reduction of ICU mortality (HR 0.67 95% CI: 0.42-1.06). Propensity score matching identified 227 patients in each group. ICU mortality of the matched samples was 48.0% and 39.6% for patients in the Supine and Prone group, respectively (p = 0.072). CONCLUSIONS: In a large population of ARDS patients receiving venovenous extracorporeal support, the use of prone positioning during ECMO was not significantly associated with reduced ICU mortality. The impact of this procedure will have to be definitively assessed by prospective randomized controlled trials.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Data Analysis , Humans , Patient Positioning , Prone Position , Prospective Studies , Respiratory Distress Syndrome/therapy , Retrospective Studies
14.
Ann Clin Transl Neurol ; 8(12): 2314-2318, 2021 12.
Article in English | MEDLINE | ID: covidwho-1536111

ABSTRACT

We report a subtype of immune-mediated encephalitis associated with COVID-19, which closely mimics acute-onset sporadic Creutzfeldt-Jakob disease. A 64-year-old man presented with confusion, aphasia, myoclonus, and a silent interstitial pneumonia. He tested positive for SARS-CoV-2. Cognition and myoclonus rapidly deteriorated, EEG evolved to generalized periodic discharges and brain MRI showed multiple cortical DWI hyperintensities. CSF analysis was normal, except for a positive 14-3-3 protein. RT-QuIC analysis was negative. High levels of pro-inflammatory cytokines were present in the CSF and serum. Treatment with steroids and intravenous immunoglobulins produced EEG and clinical improvement, with a good neurological outcome at a 6-month follow-up.


Subject(s)
COVID-19/complications , Encephalitis/etiology , Creutzfeldt-Jakob Syndrome , Encephalitis/pathology , Encephalitis/physiopathology , Humans , Male , Middle Aged , SARS-CoV-2
16.
Intensive Crit Care Nurs ; 69: 103158, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1487736

ABSTRACT

OBJECTIVE: To investigate short and long-term complications due to standard (≤24 hours) and extended (>24 hours) prone position in COVID-19 patients. METHODS: Retrospective cohort study conducted in an Italian general intensive care unit. We enrolled patients on invasive mechanical ventilation and treated with prone positioning. We recorded short term complications from the data chart and long-term complications from the scheduled follow-up visit, three months after intensive care discharge. RESULTS: A total of 96 patients were included in the study. Median time for each prone positioning cycle (302 cycles) was equal to 18 (16-32) hours. In 37 (38%) patients at least one cycle of extended pronation was implemented. Patients with at least one pressure sore due to prone position were 38 (40%). Patients with pressure sores showed a statistically significative difference in intensive care length of stay, mechanical ventilation days, numbers of prone position cycles, total time spent in prone position and the use of extended prone position, compared to patients without pressure sores. All lesions were low grade. Cheekbones (18%) and chin (10%) were the most affected sites. Follow-up visit, scheduled three months after intensive care discharge, was possible in 58 patients. All patients were able to have all 12 muscle groups examined using theMedical Research Council scale examination. No patient reported sensory loss or presence of neuropathic pain for upper limbs. CONCLUSIONS: Extended prone position is feasible and might reduce the workload on healthcare workers without significant increase of major prone position related complications.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Patient Positioning/adverse effects , Prone Position , Respiration, Artificial/adverse effects , Retrospective Studies , SARS-CoV-2
17.
PLoS One ; 16(10): e0258754, 2021.
Article in English | MEDLINE | ID: covidwho-1477539

ABSTRACT

Continuous positive airway pressure (CPAP) has been successfully applied to patients with COVID-19 to prevent endotracheal intubation. However, experience of CPAP application in pregnant women with acute respiratory failure (ARF) due to SARS-CoV-2 pneumonia is scarce. This study aimed to describe the natural history and outcome of ARF in a cohort of pregnant women with SARS-CoV-2 pneumonia, focusing on the feasibility of helmet CPAP (h-CPAP) application and the variables related to ARF worsening. A retrospective, observational study enrolling 41 consecutive pregnant women hospitalised for SARS-CoV-2 pneumonia in a tertiary care center between March 2020 and March 2021. h-CPAP was applied if arterial partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) was inferior to 200 and/or patients had respiratory distress despite adequate oxygen supplementation. Characteristics of patients requiring h-CPAP vs those in room air or oxygen only were compared. Twenty-seven (66%) patients showed hypoxemic ARF requiring oxygen supplementation and h-CPAP was needed in 10 cases (24%). PaO2/FiO2 was significantly improved during h-CPAP application. The device was well-tolerated in all cases with no adverse events. Higher serum C reactive protein and more extensive (≥3 lobes) involvement at chest X-ray upon admission were observed in the h-CPAP group. Assessment of temporal distribution of cases showed a substantially increased rate of CPAP requirement during the third pandemic wave (January-March 2021). In conclusion, h-CPAP was feasible, safe, well-tolerated and improved oxygenation in pregnant women with moderate-to-severe ARF due to SARS-CoV-2 pneumonia. Moderate-to-severe ARF was more frequently observed during the third pandemic wave.


Subject(s)
COVID-19 , Continuous Positive Airway Pressure , Oxygen/administration & dosage , Pregnancy Complications, Infectious , Respiratory Insufficiency , SARS-CoV-2/metabolism , Tertiary Care Centers , Acute Disease , Adult , COVID-19/blood , COVID-19/therapy , Female , Humans , Oxygen/blood , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/therapy , Protein C/metabolism , Respiratory Insufficiency/blood , Respiratory Insufficiency/therapy , Retrospective Studies
18.
JAMA ; 323(16): 1574-1581, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453471

ABSTRACT

Importance: In December 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged in China and has spread globally, creating a pandemic. Information about the clinical characteristics of infected patients who require intensive care is limited. Objective: To characterize patients with coronavirus disease 2019 (COVID-19) requiring treatment in an intensive care unit (ICU) in the Lombardy region of Italy. Design, Setting, and Participants: Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinator center (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network and treated at one of the ICUs of the 72 hospitals in this network between February 20 and March 18, 2020. Date of final follow-up was March 25, 2020. Exposures: SARS-CoV-2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swabs. Main Outcomes and Measures: Demographic and clinical data were collected, including data on clinical management, respiratory failure, and patient mortality. Data were recorded by the coordinator center on an electronic worksheet during telephone calls by the staff of the COVID-19 Lombardy ICU Network. Results: Of the 1591 patients included in the study, the median (IQR) age was 63 (56-70) years and 1304 (82%) were male. Of the 1043 patients with available data, 709 (68%) had at least 1 comorbidity and 509 (49%) had hypertension. Among 1300 patients with available respiratory support data, 1287 (99% [95% CI, 98%-99%]) needed respiratory support, including 1150 (88% [95% CI, 87%-90%]) who received mechanical ventilation and 137 (11% [95% CI, 9%-12%]) who received noninvasive ventilation. The median positive end-expiratory pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. The median Pao2/Fio2 was 160 (IQR, 114-220). The median PEEP level was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median difference, 0 [95% CI, 0-0]; P = .94). Median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; P = .006), and median Pao2/Fio2 was higher in younger patients: 163.5 (IQR, 120-230) vs 156 (IQR, 110-205) (median difference, 7 [95% CI, -8 to 22]; P = .02). Patients with hypertension (n = 509) were older than those without hypertension (n = 526) (median [IQR] age, 66 years [60-72] vs 62 years [54-68]; P < .001) and had lower Pao2/Fio2 (median [IQR], 146 [105-214] vs 173 [120-222]; median difference, -27 [95% CI, -42 to -12]; P = .005). Among the 1581 patients with ICU disposition data available as of March 25, 2020, 920 patients (58% [95% CI, 56%-61%]) were still in the ICU, 256 (16% [95% CI, 14%-18%]) were discharged from the ICU, and 405 (26% [95% CI, 23%-28%]) had died in the ICU. Older patients (n = 786; age ≥64 years) had higher mortality than younger patients (n = 795; age ≤63 years) (36% vs 15%; difference, 21% [95% CI, 17%-26%]; P < .001). Conclusions and Relevance: In this case series of critically ill patients with laboratory-confirmed COVID-19 admitted to ICUs in Lombardy, Italy, the majority were older men, a large proportion required mechanical ventilation and high levels of PEEP, and ICU mortality was 26%.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/epidemiology , Positive-Pressure Respiration/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness/therapy , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Sex Distribution , Young Adult
19.
Biomedicines ; 9(9)2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1408456

ABSTRACT

The synergic combination of D-dimer (as proxy of thrombotic/vascular injury) and static compliance (as proxy of parenchymal injury) in predicting mortality in COVID-19-ARDS has not been systematically evaluated. The objective is to determine whether the combination of elevated D-dimer and low static compliance can predict mortality in patients with COVID-19-ARDS. A "training sample" (March-June 2020) and a "testing sample" (September 2020-January 2021) of adult patients invasively ventilated for COVID-19-ARDS were collected in nine hospitals. D-dimer and compliance in the first 24 h were recorded. Study outcome was all-cause mortality at 28-days. Cut-offs for D-dimer and compliance were identified by receiver operating characteristic curve analysis. Mutually exclusive groups were selected using classification tree analysis with chi-square automatic interaction detection. Time to death in the resulting groups was estimated with Cox regression adjusted for SOFA, sex, age, PaO2/FiO2 ratio, and sample (training/testing). "Training" and "testing" samples amounted to 347 and 296 patients, respectively. Three groups were identified: D-dimer ≤ 1880 ng/mL (LD); D-dimer > 1880 ng/mL and compliance > 41 mL/cmH2O (LD-HC); D-dimer > 1880 ng/mL and compliance ≤ 41 mL/cmH2O (HD-LC). 28-days mortality progressively increased in the three groups (from 24% to 35% and 57% (training) and from 27% to 39% and 60% (testing), respectively; p < 0.01). Adjusted mortality was significantly higher in HD-LC group compared with LD (HR = 0.479, p < 0.001) and HD-HC (HR = 0.542, p < 0.01); no difference was found between LD and HD-HC. In conclusion, combination of high D-dimer and low static compliance identifies a clinical phenotype with high mortality in COVID-19-ARDS.

20.
Crit Care ; 25(1): 327, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1403254

ABSTRACT

A helmet, comprising a transparent hood and a soft collar, surrounding the patient's head can be used to deliver noninvasive ventilatory support, both as continuous positive airway pressure and noninvasive positive pressure ventilation (NPPV), the latter providing active support for inspiration. In this review, we summarize the technical aspects relevant to this device, particularly how to prevent CO2 rebreathing and improve patient-ventilator synchrony during NPPV. Clinical studies describe the application of helmets in cardiogenic pulmonary oedema, pneumonia, COVID-19, postextubation and immune suppression. A section is dedicated to paediatric use. In summary, helmet therapy can be used safely and effectively to provide NIV during hypoxemic respiratory failure, improving oxygenation and possibly leading to better patient-centred outcomes than other interfaces.


Subject(s)
Interactive Ventilatory Support/methods , Noninvasive Ventilation/methods , Work of Breathing/physiology , COVID-19 , Humans , Monitoring, Physiologic/methods , Noninvasive Ventilation/instrumentation , Respiratory Insufficiency/therapy
SELECTION OF CITATIONS
SEARCH DETAIL