Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add filters

Document Type
Year range
1.
Medicina ; 58(2):144, 2022.
Article in English | MDPI | ID: covidwho-1625942

ABSTRACT

A cytokine storm is a hyperinflammatory state secondary to the excessive production of cytokines by a deregulated immune system. It manifests clinically as an influenza-like syndrome, which can be complicated by multi-organ failure and coagulopathy, leading, in the most severe cases, even to death. The term cytokine storm was first used in 1993 to describe the graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. It was then reused to define the adverse syndromes secondary to the administration of immunostimulating agents, such as anti-CD28 antibodies or bioengineered immune cells, i.e., CAR T-cell therapy. Currently, the concept of cytokine storm has been better elucidated and extended to the pathogenesis of many other conditions, such as sepsis, autoinflammatory disease, primary and secondary hemophagocytic lymphohistiocytosis, and multicentric Castleman disease. Moreover, cytokine storm has recently emerged as a key aspect in the novel Coronavirus disease 2019, as affected patients show high levels of several key pro-inflammatory cytokines, such as IL-1, IL-2, IL-6, TNF-α, IFN-γ, IP-10, GM-CSF, MCP-1, and IL-10, some of which also correlate with disease severity. Therefore, since the onset of the pandemic, numerous agents have been tested in the effort to mitigate the cytokine storm in COVID-19 patients, some of which are effective in reducing mortality, especially in critically ill patients, and are now becoming standards of care, such as glucocorticoids or some cytokine inhibitors. However, the challenge is still far from being met, and other therapeutic strategies are being tested in the hope that we can eventually overcome the disease.

2.
J Clin Med ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1580635

ABSTRACT

The use of non-invasive respiratory strategies (NIRS) is crucial to improve oxygenation in COVID-19 patients with hypoxemia refractory to conventional oxygen therapy. However, the absence of respiratory symptoms may delay the start of NIRS. The aim of this study was to determine whether a simple bedside test such as single-breath counting test (SBCT) can predict the need for NIRS in the 24 h following the access to Emergency Department (ED). We performed a prospective observational study on 120 patients with COVID-19 pneumonia. ROC curves were used to analyze factors which might predict NIRS requirement. We found that 36% of patients had normal respiratory rate and did not experience dyspnea at rest. 65% of study population required NIRS in the 24 h following the access to ED. NIRS-requiring group presented lower PaO2/FiO2 (235.09 vs. 299.02), SpO2/FiO2 ratio (357.83 vs. 431.07), PaCO2 (35.12 vs. 40.08), and SBCT (24.46 vs. 30.36) and showed higher incidence of dyspnea at rest (57.7% vs. 28.6%). Furthermore, SBCT predicted NIRS requirement even in the subgroup of patients without respiratory symptoms (AUC = 0.882, cut-off = 30). SBCT might be a valuable tool for bedside assessment of respiratory function in patients with COVID-19 pneumonia and might be considered as an early clinical sign of impending respiratory deterioration.

3.
Medicina (Kaunas) ; 57(12)2021 Dec 12.
Article in English | MEDLINE | ID: covidwho-1572559

ABSTRACT

Background and Objectives: The COVID-19 pandemic has been shaking lives around the world for nearly two years. The discovery of highly effective vaccines has not been able to stop the transmission of the virus. SARS-CoV-2 shows completely different clinical manifestations. A large percentage (about 40%) of admitted patients require treatment in an intensive care unit (ICU). This study investigates the factors associated with admission of COVID-19 patients to the ICU and whether it is possible to obtain a score that can help the emergency physician to select the hospital ward. Materials and Methods: We retrospectively recorded 313 consecutive patients who were presented to the emergency department (ED) of our hospital and had a diagnosis of COVID-19 confirmed by polymerase chain reaction (PCR) on an oropharyngeal swab. We used multiple logistic regression to evaluate demographic, clinical, and laboratory data statistically associated with ICU admission. These variables were used to create a prognostic score for ICU admission. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and receiver-operating characteristic curve (ROC) of the score for predicting ICU admission during hospitalization were calculated. Results: Of the variables evaluated, only blood type A (p = 0.003), PaO2/FiO2 (p = 0.002), LDH (p = 0.004), lactate (p = 0.03), dyspnea (p = 0.03) and SpO2 (p = 0.0228) were significantly associated with ICU admission after adjusting for sex, age and comorbidity using multiple logistic regression analysis. We used these variables to create a prognostic score called GOL2DS (group A, PaO2/FiO2, LDH, lactate and dyspnea, and SpO2), which had high accuracy in predicting ICU admission (AUROC 0.830 [95% CI, 0.791-0.892). Conclusions: In our single-center experience, the GOL2DS score could be useful in identifying patients at high risk for ICU admission.


Subject(s)
COVID-19 , Hospitalization , Humans , Intensive Care Units , Pandemics , ROC Curve , Retrospective Studies , SARS-CoV-2
4.
Sci Rep ; 11(1): 21136, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493228

ABSTRACT

The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home.


Subject(s)
COVID-19/mortality , Machine Learning , Pandemics , SARS-CoV-2 , Aged , Aged, 80 and over , Blood Cell Count , Blood Chemical Analysis , COVID-19/blood , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Models, Statistical , Multivariate Analysis , Oxygen/blood , Pandemics/statistics & numerical data , ROC Curve , Risk Factors , Rome/epidemiology
5.
Aging Clin Exp Res ; 33(8): 2335-2343, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1491493

ABSTRACT

BACKGROUND: Patients hospitalized with COVID-19 experienced an increased risk of venous thromboembolism. AIMS: To evaluate the effect of chronic oral anticoagulation (OAC) therapy, both with vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs), on prognosis of COVID-19 older patients. METHODS: Single-center prospective study conducted in the Emergency Department (ED) of a teaching hospital, referral center for COVID-19 in central Italy. We evaluated all the patients ≥ 65 years, consecutively admitted to our ED for confirmed COVID-19. We compared the clinical outcome of those who were on chronic OAC at ED admission with those who did not, using a propensity score matched paired cohort of controls. The primary study endpoint was all-cause in-hospital death. Patients were matched for age, sex, clinical comorbidities, and clinical severity at presentation (based on NEWS ≥ 6). Study parameters were assessed for association to all-cause in-hospital death by a multivariate Cox regression analysis to identify independent risk factor for survival. RESULTS: Although overall mortality was slightly higher for anticoagulated patients compared to controls (63.3% vs 43.5%, p = 0.012), the multivariate adjusted hazard ratio (HR) for death was not significant (HR = 1.56 [0.78-3.12]; p = 0.208). Both DOACs (HR 1.46 [0.73-2.92]; p = 0.283) and VKAs (HR 1.14 [0.48-2.73]; p = 0.761) alone did not affect overall survival in our cohort. CONCLUSIONS: Among older patients hospitalized for COVID-19, chronic OAC therapy was not associated with a reduced risk of in-hospital death. Moreover, our data suggest similar outcome both for patients on VKAs or in patients on DOACs.


Subject(s)
COVID-19 , Administration, Oral , Anticoagulants/adverse effects , Hospital Mortality , Humans , Italy/epidemiology , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Vitamin K
6.
J Clin Med ; 10(21)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1488629

ABSTRACT

BACKGROUND: A prothrombotic state, attributable to excessive inflammation, cytokine storm, hypoxia, and immobilization, is a feature of SARS-CoV-2 infection. Up to 30% of patients with severe COVID-19 remain at high risk of thromboembolic events despite anticoagulant administration, with adverse impact on in-hospital prognosis. METHODS: We retrospectively studied 4742 patients with acute infectious respiratory disease (AIRD); 2579 were diagnosed to have COVID-19 and treated with heparin, whereas 2163 had other causes of AIRD. We compared the incidence and predictors of total, arterial, and venous thrombosis, both in the whole population and in a propensity score-matched subpopulation of 3036 patients (1518 in each group). RESULTS: 271 thrombotic events occurred in the whole population: 121 (4.7%) in the COVID-19 group and 150 (6.9%) in the no-COVID-19 group (p < 0.001). No differences in the incidence of total (p = 0.11), arterial (p = 0.26), and venous (p = 0.38) thrombosis were found between the two groups after adjustment for confounding clinical variables and in the propensity score-matched subpopulation. Likewise, there were no significant differences in bleeding rates between the two groups. Clinical predictors of arterial thrombosis included age (p = 0.006), diabetes mellitus (p = 0.034), peripheral artery disease (p < 0.001), and previous stroke (p < 0.001), whereas history of solid cancer (p < 0.001) and previous deep vein thrombosis (p = 0.007) were associated with higher incidence of venous thrombosis. CONCLUSIONS: Hospitalized patients with COVID-19 treated with heparin do not seem to show significant differences in the cumulative incidence of thromboembolic events as well as in the incidence of arterial and venous thrombosis separately, compared with AIRD patients with different etiological diagnosis.

8.
Biomedicines ; 9(9)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1430772

ABSTRACT

Myopericarditis is an inflammatory heart condition involving the pericardium and myocardium. It can lead to heart failure, dilated cardiomyopathy, arrhythmia and sudden death. Its pathogenesis is mainly mediated by viral infections but also can be induced by bacterial infections, toxic substances and immune mediated disorders. All these conditions can produce severe inflammation and myocardial injury, often associated with a poor prognosis. The specific roles of these different pathogens (in particular viruses), the interaction with the host, the interplay with gut microbiota, and the immune system responses to them are still not completely clear and under investigation. Interestingly, some research has demonstrated the contribution of the gut microbiota, and its related metabolites (some of which can mimic the cardiac myosin), in cardiac inflammation and in the progression of this disease. They can stimulate a continuous and inadequate immune response, with a subsequent myocardial inflammatory damage. The aim of our review is to investigate the role of gut microbiota in myopericarditis, especially for the cardiovascular implications of COVID-19 viral infection, based on the idea that the modulation of gut microbiota can be a new frontier in the cardiological field to prevent or treat inflammatory cardiomyopathies.

9.
Curr Med Chem ; 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1414188

ABSTRACT

BACKGROUND: The digestive tract represents an interface between the external environment and the body where the interaction of a complex polymicrobial ecology has an important influence on health and disease. The physiological mechanisms that are altered during the hospitalization and in the intensive care unit (ICU) contribute to the pathobiota's growth. Intestinal dysbiosis occurs within hours of being admitted to ICU. This may be due to different factors, such as alterations of normal intestinal transit, administration of variuos medications or alterations in the intestinal wall which causes a cascade of events that will lead to the increase of nitrates and decrease of oxygen concentration, liberation of free radicals. OBJECTIVE: This work aims to report the latest updates on the microbiota's contribution to developing sepsis in patients in the ICU department. In this short review were reviewed the latest scientific findings on the mechanisms of intestinal immune defenses performed both locally and systemically. In addition, we considered it necessary to review the literature to report the current best treatment strategies to prevent the infection spread which can bring systemic infections in patients admitted to ICU. MATERIAL AND METHODS: This review has been written to answer at three main questions: what are the main intestinal flora's defense mechanisms that help us to prevent the risk of developing systemic diseases on a day-to-day basis? What are the main dysbiosis' systemic abnormalities? What are the modern strategies that are used in the ICU patients to prevent the infection spread? Using the combination of following keywords: microbiota and ICU, ICU and gut, microbiota and critical illness, microbiota and critical care, microbiota and sepsis, microbiota and infection, gastrointestinal immunity,in the Cochrane Controlled Trials Register, the Cochrane Library, medline and pubmed, google scholar, ovid/wiley. Finally, we reviewed and selected 72 articles. We also consulted the site ClinicalTrials.com to find out studies that are recently conducted or ongoing. RESULTS: The critical illness can alter intestinal bacterial flora leading to homeostasis disequilibrium. Despite numerous mechanisms, such as epithelial cells with calciform cells that together build a mechanical barrier for pathogenic bacteria, the presence of mucous associated lymphoid tissue (MALT) which stimulates an immune response through the production of interferon-gamma (IFN-y) and THN-a or by stimulating lymphocytes T helper-2 produces anti-inflammatory cytokines. But these defenses can be altered following a hospitalization in ICU and lead to serious complications such as acute respiratory distress syndrome (ARDS), health care associated pneumonia (HAP) and ventilator associated pneumonia (VAP), Systemic infection and multiple organ failure (MOF), but also in the development of coronary artery disease (CAD). In addition, the microbiota has a significant impact on the development of intestinal complications and the severity of the SARS-COVID-19 patients. CONCLUSION: The microbiota is recognized as one of the important factors that can worsen the clinical conditions of patients who are already very frailty in intensive care unit. At the same time, the microbiota also plays a crucial role in the prevention of ICU associated complications. By using the resources, we have available, such as probiotics, symbiotics or fecal microbiota transplantation (FMT), we can preserve the integrity of the microbiota and the GUT, which will later help maintain homeostasis in ICU patients.

10.
Europace ; 23(1): 123-129, 2021 01 27.
Article in English | MEDLINE | ID: covidwho-1387869

ABSTRACT

AIMS: The main severe complications of SARS-CoV-2 infection are pneumonia and respiratory distress syndrome. Recent studies, however, reported that cardiac injury, as assessed by troponin levels, is associated with a worse outcome in these patients. No study hitherto assessed whether the simple standard electrocardiogram (ECG) may be helpful for risk stratification in these patients. METHODS AND RESULTS: We studied 324 consecutive patients admitted to our Emergency Department with a confirmed diagnosis of SARS-CoV-2 infection. Standard 12-lead ECG recorded on admission was assessed for cardiac rhythm and rate, atrioventricular and intraventricular conduction, abnormal Q/QS wave, ST segment and T wave changes, corrected QT interval, and tachyarrhythmias. At a mean follow-up of 31 ± 11 days, 44 deaths occurred (13.6%). Most ECG variables were significantly associated with mortality, including atrial fibrillation (P = 0.002), increasing heart rate (P = 0.002), presence of left bundle branch block (LBBB; P < 0.001), QRS duration (P <0 .001), a QRS duration of ≥110 ms (P < 0.001), ST segment depression (P < 0.001), abnormal Q/QS wave (P = 0.034), premature ventricular complexes (PVCs; P = 0.051), and presence of any ECG abnormality [hazard ratio (HR) 4.58; 95% confidence interval (CI) 2.40-8.76; P < 0.001]. At multivariable analysis, QRS duration (P = 0.002), QRS duration ≥110 ms (P = 0.03), LBBB (P = 0.014) and presence of any ECG abnormality (P = 0.04) maintained a significant independent association with mortality. CONCLUSION: Our data show that standard ECG can be helpful for an initial risk stratification of patients admitted for SARS-CoV-2 infectious disease.


Subject(s)
COVID-19/complications , Electrocardiography , Heart Conduction System/physiopathology , Heart Diseases/diagnosis , Heart Rate , Action Potentials , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Female , Heart Diseases/etiology , Heart Diseases/mortality , Heart Diseases/physiopathology , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Time Factors
11.
EClinicalMedicine ; 27: 100553, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1385448

ABSTRACT

Background: Interleukin-6 signal blockade showed preliminary beneficial effects in treating inflammatory response against SARS-CoV-2 leading to severe respiratory distress. Herein we describe the outcomes of off-label intravenous use of Sarilumab in severe SARS-CoV-2-related pneumonia. Methods: 53 patients with SARS-CoV-2 severe pneumonia received intravenous Sarilumab; pulmonary function improvement or Intensive Care Unit (ICU) admission rate in medical wards, live discharge rate in ICU treated patients and safety profile were recorded. Sarilumab 400 mg was administered intravenously on day 1, with eventual additional infusion based on clinical judgement, and patients were followed for at least 14 days, unless previously discharged or dead. Findings: Of the 53 SARS-CoV-2pos patients receiving Sarilumab, 39(73·6%) were treated in medical wards [66·7% with a single infusion; median PaO2/FiO2:146(IQR:120-212)] while 14(26·4%) in ICU [92·6% with a second infusion; median PaO2/FiO2: 112(IQR:100-141.5)].Within the medical wards, 7(17·9%) required ICU admission, 4 of whom were re-admitted to the ward within 5-8 days. At 19 days median follow-up, 89·7% of medical inpatients significantly improved (46·1% after 24 h, 61·5% after 3 days), 70·6% were discharged from the hospital and 85·7% no longer needed oxygen therapy. Within patients receiving Sarilumab in ICU, 64·2% were discharged from ICU to the ward and 35·8% were still alive at the last follow-up. Overall mortality rate was 5·7%. Interpretation: IL-6R inhibition appears to be a potential treatment strategy for severe SARS-CoV-2 pneumonia and intravenous Sarilumab seems a promising treatment approach showing, in the short term, an important clinical outcome and good safety.

12.
JCI Insight ; 6(13)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1346128

ABSTRACT

We explored the potential link between chronic inflammatory arthritis and COVID-19 pathogenic and resolving macrophage pathways and their role in COVID-19 pathogenesis. We found that bronchoalveolar lavage fluid (BALF) macrophage clusters FCN1+ and FCN1+SPP1+ predominant in severe COVID-19 were transcriptionally related to synovial tissue macrophage (STM) clusters CD48hiS100A12+ and CD48+SPP1+ that drive rheumatoid arthritis (RA) synovitis. BALF macrophage cluster FABP4+ predominant in healthy lung was transcriptionally related to STM cluster TREM2+ that governs resolution of synovitis in RA remission. Plasma concentrations of SPP1 and S100A12 (key products of macrophage clusters shared with active RA) were high in severe COVID-19 and predicted the need for Intensive Care Unit transfer, and they remained high in the post-COVID-19 stage. High plasma levels of SPP1 were unique to severe COVID-19 when compared with other causes of severe pneumonia, and IHC localized SPP1+ macrophages in the alveoli of COVID-19 lung. Investigation into SPP1 mechanisms of action revealed that it drives proinflammatory activation of CD14+ monocytes and development of PD-L1+ neutrophils, both hallmarks of severe COVID-19. In summary, COVID-19 pneumonitis appears driven by similar pathogenic myeloid cell pathways as those in RA, and their mediators such as SPP1 might be an upstream activator of the aberrant innate response in severe COVID-19 and predictive of disease trajectory including post-COVID-19 pathology.


Subject(s)
Arthritis, Rheumatoid/immunology , COVID-19/immunology , Monocytes/immunology , Neutrophils/immunology , Osteopontin/immunology , Arthritis, Rheumatoid/metabolism , B7-H1 Antigen/immunology , Bronchoalveolar Lavage Fluid/immunology , CD48 Antigen/immunology , COVID-19/chemically induced , COVID-19/metabolism , Fatty Acid-Binding Proteins/immunology , Humans , Lectins/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Lung/diagnostic imaging , Lung/immunology , Lung/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/immunology , Monocytes/metabolism , Neutrophils/metabolism , Osteopontin/blood , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Immunologic/immunology , S100A12 Protein/immunology , S100A12 Protein/metabolism , Synovial Membrane/immunology , Tomography, X-Ray Computed
13.
J Am Med Dir Assoc ; 22(9): 1845-1852.e1, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345368

ABSTRACT

OBJECTIVES: To evaluate, in a cohort of adults aged ≥80 years, the overlapping effect of clinical severity, comorbidities, cognitive impairment, and frailty, for the in-hospital death risk stratification of COVID-19 older patients since emergency department (ED) admission. DESIGN: Single-center prospective observational cohort study. SETTING AND PARTICIPANTS: The study was conducted in the ED of a teaching hospital that is a referral center for COVID-19 in central Italy. We enrolled all patients with aged ≥80 years old consecutively admitted to the ED between April 2020 and March 2021. METHODS: Clinical variables assessed in the ED were evaluated for the association with all-cause in-hospital death. Evaluated parameters were severity of disease, frailty, comorbidities, cognitive impairment, delirium, and dependency in daily life activities. Cox regression analysis was used to identify independent risk factors for poor outcomes. RESULTS: A total of 729 patients aged ≥80 years were enrolled [median age 85 years (interquartile range 82-89); 346 were males (47.3%)]. According to the Clinical Frailty Scale, 61 (8.4%) were classified as fit, 417 (57.2%) as vulnerable, and 251 (34.4%) as frail. Severe disease [hazard ratio (HR) 1.87, 95% confidence interval (CI) 1.31-2.59], ≥3 comorbidities (HR 1.54, 95% CI 1.11-2.13), male sex (HR 1.46, 95% CI 1.14-1.87), and frailty (HR 6.93, 95% CI 1.69-28.27) for vulnerable and an overall HR of 12.55 (95% CI 2.96-53.21) for frail were independent risk factors for in-hospital death. CONCLUSIONS AND IMPLICATIONS: The ED approach to older patients with COVID-19 should take into account the functional and clinical characteristics of patients being admitted. A sole evaluation based on the clinical severity and the presence of comorbidities does not reflect the complexity of this population. A comprehensive evaluation based on clinical severity, multimorbidity, and frailty could effectively predict the clinical risk of in-hospital death for patients with COVID-19 aged ≥80 years at the time of ED presentation.


Subject(s)
COVID-19 , Frailty , Adult , Aged , Emergency Service, Hospital , Frail Elderly , Frailty/diagnosis , Frailty/epidemiology , Geriatric Assessment , Hospital Mortality , Humans , Infant, Newborn , Male , Prospective Studies , Risk Assessment , SARS-CoV-2
14.
Minerva Anestesiol ; 87(9): 1006-1016, 2021 09.
Article in English | MEDLINE | ID: covidwho-1311484

ABSTRACT

BACKGROUND: The aim of this study is to determine relationships between lung aeration assessed by lung ultrasound (LUS) with non-invasive ventilation (NIMV) outcome, intensive care unit (ICU) admission and mechanical ventilation (MV) needs in COVID-19 respiratory failure. METHODS: A cohort of adult patients with COVID-19 respiratory failure underwent LUS during initial assessment. A simplified LUS protocol consisting in scanning six areas, three for each side, was adopted. A score from 0 to 3 was assigned to each area. Comprehensive LUS score (LUSsc) was calculated as the sum of the score in all areas. LUSsc, the amount of involved sonographic lung areas (LUSq), the number of lung quadrants radiographically infiltrated and the degree of oxygenation impairment at admission (SpO2/FiO2 ratio) were compared to NIMV Outcome, MV needs and ICU admission. RESULTS: Among 85 patients prospectively included in the analysis, 49 of 61 needed MV. LUSsc and LUSq were higher in patients who required MV (median 12 [IQR 8-14] and median 6 [IQR 4-6], respectively) than in those who did not (6 [IQR 2-9] and 3 [IQR 1-5], respectively), both P<0.001. NIMV trial failed in 26 patients out 36. LUSsc and LUSq were significantly higher in patients who failed NIMV than in those who did not. From ROC analysis, LUSsc ≥12 and LUSq ≥5 gave the best cut-off values for NIMV failure prediction (AUC=0.95, 95%CI 0.83-0.99 and AUC=0.81, 95% CI 0.65-0.91, respectively). CONCLUSIONS: Our data suggest LUS as a possible tool for identifying patients who are likely to require MV and ICU admission or to fail a NIMV trial.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Humans , Lung/diagnostic imaging , Pilot Projects , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/therapy , SARS-CoV-2
15.
Cells ; 10(7)2021 07 11.
Article in English | MEDLINE | ID: covidwho-1308299

ABSTRACT

Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.


Subject(s)
COVID-19/metabolism , Renin-Angiotensin System , SARS-CoV-2/physiology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/drug therapy , COVID-19/pathology , Drug Discovery , Humans , Molecular Targeted Therapy , Renin-Angiotensin System/drug effects , SARS-CoV-2/drug effects
16.
Diagnostics (Basel) ; 11(7)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295790

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen detection has currently expanded the testing capacity for COVID-19, which yet relies on the SARS-CoV-2 RNA RT-PCR amplification. OBJECTIVES: To report on a COVID-19 testing algorithm from a tertiary care hospital emergency department (ED) that combines both antigen (performed on the ED) and RT-PCR (performed outside the ED) testing. METHODS: Between December 2020 and January 2021, in a priori designated, spatially separated COVID-19 or non-COVID-19 ED areas, respectively, symptomatic or asymptomatic patients received SARS-CoV-2 antigen testing on nasopharyngeal swab samples. Antigen results were promptly accessible to guide subsequent, outside performed confirmatory (RT-PCR) testing. RESULTS: Overall, 1083 (100%) of 1083 samples in the COVID-19 area and 1815 (49.4%) of 3670 samples in the non-COVID-19 area had antigen results that required confirmation by RT-PCR. Antigen positivity rates were 12.4% (134/1083) and 3.7% (66/1815), respectively. Compared to RT-PCR testing results, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of antigen testing were, respectively, 68.0%, 98.3%, 88.8%, and 94.1% in the COVID-19 area, and 41.9%, 97.3%, 27.3%, and 98.6% in non-COVID-19 area. Practically, RT-PCR tests were avoided in 50.6% (1855/3670) of non-COVID-19 area samples (all antigen negative) from patients who, otherwise, would have needed antigen result confirmation. CONCLUSIONS: Our algorithm had value to preserve RT-PCR from avoidable usage and, importantly, to save time, which translated into a timely RT-PCR result availability in the COVID-19 area.

18.
Intern Emerg Med ; 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1220529

ABSTRACT

INTRODUCTION: Antibody response plays a fundamental role in the natural history of infectious disease. A better understanding of the immune response in patients with SARS-CoV-2 infection could be important for identifying patients at greater risk of developing a more severe form of disease and with a worse prognosis. METHODS: We performed a cross-sectional analysis to determine the presence and the levels of both anti-SARS-CoV-2 IgG and IgA in a cohort of hospitalized patients with confirmed infection at different times in the natural history of the disease. Patients enrolled when admitted at the emergency department were prospectively followed up during hospital stay. RESULTS: Overall, 131 patients were considered with a total of 237 samples processed. Cross-sectional analysis showed that seroconversion for IgA seems to occur between days 6 and 15, while IgG response seems to occur slightly later, peaking at day 20 after symptoms onset. Both IgA and IgG were maintained beyond 2 months. Severe patients showed a higher IgA response compared with mild patients when analyzing optical density (8.3 versus 5.6, p < 0.001). Prospective analysis conducted on 55 patients confirmed that IgA appear slightly earlier than IgG. After stratifying for the severity of disease, both the IgA and IgG responses were more vigorous in severe cases. Moreover, while IgG tended to stabilize, there was a relevant decline after the first month of IgA levels in mild cases. CONCLUSION: IgA and IgG antibody response is closely related, although seroconversion for IgA occurs earlier. Both IgA and IgG are maintained beyond 2 months. Severe patients showed a more vigorous IgA and IgG response. IgA levels seem to decline after 1 month since the onset of symptoms in mild cases. Our results should be interpreted with cautions due to several limitations in our study, mainly the small number of cases, lack of data on viral load and clinical setting.

19.
Ann Vasc Surg ; 75: 136-139, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1210816

ABSTRACT

INTRODUCTION: The SARS-CoV-2 infection is associated with significant morbidity and mortality rates. The impact of thrombotic complications has been increasingly recognized as an important component of this disease. CASE REPORTS: We describe four cases of spontaneous acute aortic thrombosis in patients with SARS-CoV-2 infection observed from March to December 2020 at Fondazione Policlinico Universitario Gemelli IRCCS in Rome, Italy.


Subject(s)
Aortic Diseases/etiology , COVID-19/complications , Thrombosis/etiology , Acute Disease , Aged , Aortic Diseases/diagnostic imaging , Aortic Diseases/surgery , COVID-19/diagnosis , Embolectomy , Fatal Outcome , Female , Humans , Male , Thrombectomy , Thrombosis/diagnostic imaging , Thrombosis/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...