Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-306884

ABSTRACT

We have deeply investigated T cell compartment, plasma cytokines and cells producing cytokines in patients affected by Covid-19. At admission, patients were lymphopenic;in all of them SARS-CoV-2 was detected in a nasopharyngeal swab specimen by real-time RT-PCR, and pneumonia was subsequently confirmed by X-rays.Detailed 18-parameter flow cytometry was performed in 21 patients and 13 controls. Coupling polychromatic cytometry with unsupervised data analysis, we found that patients show an increased amount of CD4+ T lymphocytes that were activated, exhausted, stem memory or Treg. Similar results concerning activation and exhaustion were found in the CD8+ T cell compartment, within which the differences were even greater.Measuring plasma level of 31 cytokines linked to inflammation revealed that Covid-19 showed a dramatic increase of several molecules, such as TH1 and TH2 cytokines, chemokines, galectins, pro- and anti-inflammatory mediators, confirming the importance of a massive immune activation causing the cytokine storm. Then, intracellular staining detecting the simultaneous production of different cytokines after a para-physiologic stimulus given by anti-CD3/CD28 mAbs revealed not only a high capacity to produce a variety of molecules, including TNF-a, IFN-g and IL-2, but also a significant skewing of CD4+ T cells towards the TH17 phenotype.A therapeutic approach now exists based on the administration of drugs that block IL-6 pathway, and is now consistently improving the course of the disease. IL-17 is crucial in recruiting and activating neutrophils, cells that can migrate to the lung and are heavily involved in the pathogenesis of Covid-19. We show here that a significant skewing of activated T cells towards TH17 functional phenotype exists in Covid-19 patients. Thus, we suggest that blocking IL-17 pathway by already available biological drugs that are used to treat different pathologies could be a novel, additional strategy to improve the health of patients infected by SARS-CoV-2.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-306562

ABSTRACT

Background: The study analysed risk factors for bacterial and fungal co-infection in patients with COVID-19 and the impact on mortality. Methods: This is a single-center retrospective study conducted on 387 patients with confirmed COVID-19 pneumonia admitted to an Italian Tertiary-care hospital, between 21 February 2020 and 31 May 2020. Bacterial/fungal coinfection was determined by the presence of characteristic clinical features and positive culture results. Multivariable logistic regression was used to analyze risk factors for the development of bacterial/fungal co-infection after adjusting for demographic characteristics and comorbidities. Thirty-day survival of the patients with or without co-infections was analysed by Kaplan-Meier method. Results: In 53/387 (13.7%) patients with COVID-19 pneumonia, 67 episodes of bacterial/fungal co-infection occurred (14 presented >1 episode). Pneumonia was the most frequent co-infection (47.7%), followed by BSI (34.3%) and UTI (11.9%). S. aureus was responsible for 24 episodes (35.8%), E. coli for 7 (10.4%), P. aerugionsa and Enterococcus spp. for 5 episodes each (7.4%). Five (7.4%) pulmonary aspergillosis, 3 (4.4%) pneumocystosis and 5 (7.4%) invasive candidiases were observed. Multivariable analysis showed a higher risk of infection in patients with an age>65 years (csHR 2.680;95%CI: 1.254 - 5.727;p=0.054), with cancer (csHR 5.243;95%CI: 1.173-23.423;p=0.030), with a LOS>10 days (csHR 12.507;95%CI: 2.659 – 58.830;p=0.001), early (within 48h) admitted in ICU (csHR 11.766;95% CI: 4.353-31.804;p<0.001), and with a SOFA score>5 (csHR 3.397;95% CI: 1.091 - 10.581;p=0.035). Estimated cumulative risk of developing at least 1 bacterial/fungal co-infection episode was of 15% and 27% after 15 and 30 days from admission, respectively. Kaplan-Meier estimated a higher cumulative probability of death in patients with bacterial/fungal co-infection (log-rank=0.031). Thirty-day mortality rate of patients with pneumonia was 38.7%, higher than those with BSI (30.4%). Conclusions: Bacterial and fungal infections are a serious complication affecting the survival of patients with COVID-19-related pneumonia. Some issues need to be investigated, such as the best empirical antibiotic therapy and the need for possible antifungal prophylaxis.

3.
PLoS One ; 16(8): e0251378, 2021.
Article in English | MEDLINE | ID: covidwho-1354756

ABSTRACT

BACKGROUND: The benefit of tocilizumab on mortality and time to recovery in people with severe COVID pneumonia may depend on appropriate timing. The objective was to estimate the impact of tocilizumab administration on switching respiratory support states, mortality and time to recovery. METHODS: In an observational study, a continuous-time Markov multi-state model was used to describe the sequence of respiratory support states including: no respiratory support (NRS), oxygen therapy (OT), non-invasive ventilation (NIV) or invasive mechanical ventilation (IMV), OT in recovery, NRS in recovery. RESULTS: Two hundred seventy-one consecutive adult patients were included in the analyses contributing to 695 transitions across states. The prevalence of patients in each respiratory support state was estimated with stack probability plots, comparing people treated with and without tocilizumab since the beginning of the OT state. A positive effect of tocilizumab on the probability of moving from the invasive and non-invasive mechanical NIV/IMV state to the OT in recovery state (HR = 2.6, 95% CI = 1.2-5.2) was observed. Furthermore, a reduced risk of death was observed in patients in NIV/IMV (HR = 0.3, 95% CI = 0.1-0.7) or in OT (HR = 0.1, 95% CI = 0.0-0.8) treated with tocilizumab. CONCLUSION: To conclude, we were able to show the positive impact of tocilizumab used in different disease stages depicted by respiratory support states. The use of the multi-state Markov model allowed to harmonize the heterogeneous mortality and recovery endpoints and summarize results with stack probability plots. This approach could inform randomized clinical trials regarding tocilizumab, support disease management and hospital decision making.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Respiratory Therapy/methods , Aged , Female , Humans , Male , Markov Chains , Middle Aged , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiration, Artificial , Time Factors , Treatment Outcome
4.
AIDS Res Hum Retroviruses ; 37(4): 283-291, 2021 04.
Article in English | MEDLINE | ID: covidwho-1207222

ABSTRACT

The aim of this study was to evaluate both positive outcomes, including reduction of respiratory support aid and duration of hospital stay, and negative ones, including mortality and a composite of invasive mechanical ventilation or death, in patients with coronavirus disease 2019 (COVID-19) pneumonia treated with or without oral darunavir/cobicistat (DRV/c, 800/150 mg/day) used in different treatment durations. The secondary objective was to evaluate the percentage of patients treated with DRV/c who were exposed to potentially severe drug-drug interactions (DDIs) and died during hospitalization. This observational retrospective study was conducted in consecutive patients with COVID-19 pneumonia admitted to a tertiary care hospital in Modena, Italy. Kaplan-Meier survival curves and Cox proportional hazards regression were used to compare patients receiving standard of care with or without DRV/c. Adjustment for key confounders was applied. Two hundred seventy-three patients (115 on DRV/c) were included, 75.8% males, mean age was 64.6 (±13.2) years. Clinical improvement was similar between the groups, depicted by respiratory aid switch (p > .05). The same was observed for duration of hospital stay [13.2 (±8.9) for DRV/c vs. 13.4 (±7.2) days for no-DRV/c, p = .9]. Patients on DRV/c had higher rates of mortality (25.2% vs. 10.1%, p < .0001. The rate of composite outcome of mechanical ventilation and death was higher in the DRV/c group (37.4% vs. 25.3%, p = .03). Multiple serious DDI associated with DRV/c were observed in the 19 patients who died. DRV/c should not be recommended as a treatment option for COVID-19 pneumonia outside clinical trials.


Subject(s)
Anti-HIV Agents/therapeutic use , COVID-19/drug therapy , Cobicistat/therapeutic use , Darunavir/therapeutic use , Adult , Anti-HIV Agents/adverse effects , COVID-19/mortality , COVID-19/virology , Cobicistat/adverse effects , Darunavir/adverse effects , Drug Combinations , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification
5.
Clin Exp Nephrol ; 25(4): 401-409, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1008116

ABSTRACT

BACKGROUND: Patients with COVID-19 experience multiple clinical conditions that may cause electrolyte imbalances. Hypokalemia is a concerning electrolyte disorder closely associated with severe complications. This study aimed to estimate prevalence, risk factors and outcome of hypokalemia in a cohort of patients with confirmed COVID-19. METHODS: A retrospective analysis was conducted on 290 non-ICU admitted patients with COVID-19 at the tertiary teaching hospital of Modena, Italy, from February 16 to April 14, 2020. RESULTS: Hypokalemia was detected in 119 out of 290 patients (41%) during hospitalization. Mean serum potassium was 3.1 ± 0.1 meq/L. The majority of patients (90.7%) patients experienced only a mild decrease in serum potassium level (3-3.4 mEq/L). Hypokalemia was associated with hypocalcemia, which was detected in 50% of subjects. Urine potassium-to-creatinine ratio, measured in a small number of patients (n = 45; 36.1%), revealed an increase of urinary potassium excretion in most cases (95.5%). Risk factors for hypokalemia were female sex (odds ratio (OR) 2.44; 95% CI 1.36-4.37; P 0.003) and diuretic therapy (OR 1.94, 95% CI 1.08-3.48; P 0.027). Hypokalemia, adjusted for sex, age and SOFA score, was not associated with ICU transfer (OR 0.52; 95% CI 0.228-1.212; P = 0.131), in-hospital mortality (OR, 0.47; 95% CI 0.170-1.324; P = 0.154) and composite outcome of ICU transfer or in-hospital mortality (OR 0.48; 95% CI 0.222-1.047; P = 0.065) in our cohort of patients. CONCLUSIONS: Hypokalemia was a frequent disorder in subjects with COVID-19. Female sex and diuretic therapy were identified as risk factors for low serum potassium levels. Hypokalemia was unrelated to ICU transfer and death in this cohort of patients.


Subject(s)
COVID-19/complications , Hypokalemia/etiology , SARS-CoV-2 , Aged , Aged, 80 and over , Diuretics/adverse effects , Female , Hospital Mortality , Humans , Hypokalemia/drug therapy , Hypokalemia/epidemiology , Male , Middle Aged , Potassium/blood , Potassium/urine , Prevalence , Retrospective Studies , Risk Factors
6.
PLoS One ; 15(11): e0239172, 2020.
Article in English | MEDLINE | ID: covidwho-922701

ABSTRACT

AIMS: The aim of this study was to estimate a 48 hour prediction of moderate to severe respiratory failure, requiring mechanical ventilation, in hospitalized patients with COVID-19 pneumonia. METHODS: This was an observational prospective study that comprised consecutive patients with COVID-19 pneumonia admitted to hospital from 21 February to 6 April 2020. The patients' medical history, demographic, epidemiologic and clinical data were collected in an electronic patient chart. The dataset was used to train predictive models using an established machine learning framework leveraging a hybrid approach where clinical expertise is applied alongside a data-driven analysis. The study outcome was the onset of moderate to severe respiratory failure defined as PaO2/FiO2 ratio <150 mmHg in at least one of two consecutive arterial blood gas analyses in the following 48 hours. Shapley Additive exPlanations values were used to quantify the positive or negative impact of each variable included in each model on the predicted outcome. RESULTS: A total of 198 patients contributed to generate 1068 usable observations which allowed to build 3 predictive models based respectively on 31-variables signs and symptoms, 39-variables laboratory biomarkers and 91-variables as a composition of the two. A fourth "boosted mixed model" included 20 variables was selected from the model 3, achieved the best predictive performance (AUC = 0.84) without worsening the FN rate. Its clinical performance was applied in a narrative case report as an example. CONCLUSION: This study developed a machine model with 84% prediction accuracy, which is able to assist clinicians in decision making process and contribute to develop new analytics to improve care at high technology readiness levels.


Subject(s)
Computer Simulation , Coronavirus Infections/complications , Machine Learning , Pneumonia, Viral/complications , Respiratory Insufficiency/diagnosis , Aged , Betacoronavirus , Blood Gas Analysis , COVID-19 , Female , Humans , Italy , Male , Middle Aged , Models, Statistical , Pandemics , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/etiology , SARS-CoV-2
8.
Nat Commun ; 11(1): 3434, 2020 07 06.
Article in English | MEDLINE | ID: covidwho-631255

ABSTRACT

The immune system of patients infected by SARS-CoV-2 is severely impaired. Detailed investigation of T cells and cytokine production in patients affected by COVID-19 pneumonia are urgently required. Here we show that, compared with healthy controls, COVID-19 patients' T cell compartment displays several alterations involving naïve, central memory, effector memory and terminally differentiated cells, as well as regulatory T cells and PD1+CD57+ exhausted T cells. Significant alterations exist also in several lineage-specifying transcription factors and chemokine receptors. Terminally differentiated T cells from patients proliferate less than those from healthy controls, whereas their mitochondria functionality is similar in CD4+ T cells from both groups. Patients display significant increases of proinflammatory or anti-inflammatory cytokines, including T helper type-1 and type-2 cytokines, chemokines and galectins; their lymphocytes produce more tumor necrosis factor (TNF), interferon-γ, interleukin (IL)-2 and IL-17, with the last observation implying that blocking IL-17 could provide a novel therapeutic strategy for COVID-19.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Cellular Senescence , Coronavirus Infections/blood , Coronavirus Infections/pathology , Cytokine Release Syndrome , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Immunologic Memory , Italy/epidemiology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , SARS-CoV-2 , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL