Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
Insights Imaging ; 13(1): 44, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1741953

ABSTRACT

As of September 18th, 2021, global casualties due to COVID-19 infections approach 200 million, several COVID-19 vaccines have been authorized to prevent COVID-19 infection and help mitigate the spread of the virus. Despite the vast majority having safely received vaccination against SARS-COV-2, the rare complications following COVID-19 vaccination have often been life-threatening or fatal. The mechanisms underlying (multi) organ complications are associated with COVID-19, either through direct viral damage or from host immune response (i.e., cytokine storm). The purpose of this manuscript is to review the role of imaging in identifying and elucidating multiorgan complications following SARS-COV-2 vaccination-making clear that, in any case, they represent a minute fraction of those in the general population who have been vaccinated. The authors are both staunch supporters of COVID-19 vaccination and vaccinated themselves as well.

3.
Eur Radiol ; 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1712233

ABSTRACT

OBJECTIVES: To assess clinical and cardiac magnetic resonance (CMR) imaging features of patients with peri-myocarditis following Coronavirus Disease 2019 (COVID-19) vaccination. METHODS: We retrospectively collected a case series of 27 patients who underwent CMR in the clinical suspect of heart inflammation following COVID-19 vaccination, from 16 large tertiary centers. Our patient's cohort was relatively young (36.6 ± 16.8 years), predominately included males (n = 25/27) with few comorbidities and covered a catchment area of approximately 8 million vaccinated patients. RESULTS: CMR revealed typical mid-subepicardial non-ischemic late gadolinium enhancement (LGE) in 23 cases and matched positively with CMR T2 criteria of myocarditis. In 7 cases, typical hallmarks of acute pericarditis were present. Short-term follow-up (median = 20 days) from presentation was uneventful for 25/27 patients and unavailable in two cases. CONCLUSIONS: While establishing a causal relationship between peri-myocardial inflammation and vaccine administration can be challenging, our clinical experience suggests that CMR should be performed for diagnosis confirmation and to drive clinical decision-making and follow-up. KEY POINTS: • Acute onset of dyspnea, palpitations, or acute and persisting chest pain after COVID-19 vaccination should raise the suspicion of possible myocarditis or pericarditis, and patients should seek immediate medical attention and treatment to help recovery and avoid complications. • In case of elevated troponin levels and/or relevant ECG changes, cardiac magnetic resonance should be considered as the best non-invasive diagnostic option to confirm the diagnosis of myocarditis or pericarditis and to drive clinical decision-making and follow-up.

4.
Clin Rev Allergy Immunol ; 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1653765

ABSTRACT

The cardiovascular system is frequently affected by coronavirus disease-19 (COVID-19), particularly in hospitalized cases, and these manifestations are associated with a worse prognosis. Most commonly, heart involvement is represented by myocarditis, myocardial infarction, and pulmonary embolism, while arrhythmias, heart valve damage, and pericarditis are less frequent. While the clinical suspicion is necessary for a prompt disease recognition, imaging allows the early detection of cardiovascular complications in patients with COVID-19. The combination of cardiothoracic approaches has been proposed for advanced imaging techniques, i.e., CT scan and MRI, for a simultaneous evaluation of cardiovascular structures, pulmonary arteries, and lung parenchyma. Several mechanisms have been proposed to explain the cardiovascular injury, and among these, it is established that the host immune system is responsible for the aberrant response characterizing severe COVID-19 and inducing organ-specific injury. We illustrate novel evidence to support the hypothesis that molecular mimicry may be the immunological mechanism for myocarditis in COVID-19. The present article provides a comprehensive review of the available evidence of the immune mechanisms of the COVID-19 cardiovascular injury and the imaging tools to be used in the diagnostic workup. As some of these techniques cannot be implemented for general screening of all cases, we critically discuss the need to maximize the sustainability and the specificity of the proposed tests while illustrating the findings of some paradigmatic cases.

5.
Emerg Radiol ; 29(2): 243-262, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1634393

ABSTRACT

Infection with SARS-CoV-2 has dominated discussion and caused global healthcare and economic crisis over the past 18 months. Coronavirus disease 19 (COVID-19) causes mild-to-moderate symptoms in most individuals. However, rapid deterioration to severe disease with or without acute respiratory distress syndrome (ARDS) can occur within 1-2 weeks from the onset of symptoms in a proportion of patients. Early identification by risk stratifying such patients who are at risk of severe complications of COVID-19 is of great clinical importance. Computed tomography (CT) is widely available and offers the potential for fast triage, robust, rapid, and minimally invasive diagnosis: Ground glass opacities (GGO), crazy-paving pattern (GGO with superimposed septal thickening), and consolidation are the most common chest CT findings in COVID pneumonia. There is growing interest in the prognostic value of baseline chest CT since an early risk stratification of patients with COVID-19 would allow for better resource allocation and could help improve outcomes. Recent studies have demonstrated the utility of baseline chest CT to predict intensive care unit (ICU) admission in patients with COVID-19. Furthermore, developments and progress integrating artificial intelligence (AI) with computer-aided design (CAD) software for diagnostic imaging allow for objective, unbiased, and rapid assessment of CT images.


Subject(s)
COVID-19 , Artificial Intelligence , Follow-Up Studies , Humans , Intensive Care Units , Prognosis , SARS-CoV-2 , Tomography, X-Ray Computed/methods
6.
European heart journal supplements : journal of the European Society of Cardiology ; 23(Suppl G), 2021.
Article in English | EuropePMC | ID: covidwho-1602539

ABSTRACT

Aims Despite being a common finding in hospitalized COVID-19 patients, cardiac troponin elevation remains a nonspecific detection of myocardial injury and further in-hospital investigation into the cause of myocardial injury is rarely done. COVID-19 patients with myocardial injury show a significantly higher in-hospital mortality rate compared with those without myocardial injury and among those with myocardial injury, greater degrees of troponin elevation are associated with higher mortality rates. There are still many questions regarding possible cardiovascular sequelae and prognostic significance in these patients. Being able to distinguish between inflammatory and ischaemic causes of myocardial injury cardiovascular magnetic resonance (CMR) is the non-invasive modality of choice to investigate myocardial involvement in these patients. Presented are the preliminary single-centre results from a multicentre study aimed to characterize the prevalence, type and extent of COVID-19-related cardiovascular sequelae using CMR imaging. Methods and results In this single-centre prospective observational cohort study, patients hospitalized with confirmed COVID-19 and at least one value of high sensitivity I troponin (hs-Tnl) >99th percentile during hospitalization were eligible for follow-up contrast-enhanced CMR imaging. Patients with any standard CMR contraindications were excluded. Images were acquired using a standardized myocarditis protocol including late gadolinium enhancement (LGE) and T1 and T2 mapping. Cutoff values of 1015 ms and 50 ms were used for abnormal T1 and T2 measurements, respectively. Of the 21 patients (65 ± 11.85 years) who underwent imaging, 15 (71.4%) were male. The mean follow-up duration from the date of confirmed COVID-19 diagnosis was 169 ± 19 days. The mean left ventricular ejection fraction was 64.1 ± 13.87 and 3 (14.3%) patients had evidence of wall motion abnormalities. LGE was seen in 9/20 (45.0%) patients, reflecting myocardial fibrosis. Increased native T1 signal representing myocardial fibrosis and/or oedema was seen in 9/20 (45.0%) patients. While increased native T2 signal, being more specific for oedema was observed in 3/20 (15.0%) patients. Considering CMR findings, 6 (28.6%) patients showed evidence of previous myocarditis. Conclusions In this single centre Italian study of patients hospitalized with COVID-19 and elevated cardiac enzymes, myocarditis-like injury was evident in about a quarter of the patients. Whether these findings will lead to long-term cardiac complications is still to be confirmed.

7.
European heart journal supplements : journal of the European Society of Cardiology ; 23(Suppl G), 2021.
Article in English | EuropePMC | ID: covidwho-1601907

ABSTRACT

Aims Subclinical myocardial damage is not uncommon in COVID-19 patients, likely reflecting a combination of direct viral toxicity with the activation of an uncontrolled autoimmune response usually developing during the cytokine storm phase. Whilst myocardial involvement in hospitalized patients has been extensively described in literature, no data are currently available for non-hospitalized individuals. Present study aimed to explore prevalence and impact on patients’ management of myocardial damage detected with CMR, in a cohort of consecutive non-hospitalized SARS-CoV-2 infection patients. Methods and results We conducted a single centre prospective observational study on 31 consecutive patients with previous COVID-19 who underwent CMR between October 2020 and June 2021 without requiring hospital admission. Myocarditis was defined by CMR according to the revised Lake Louise Criteria (LLC), if at least one criterion was positive: T2-based marker for myocardial oedema and T1-based marker for associated myocardial injury. Our patients’ cohort included 31 individuals with a mean age of 42.5 ± 17.4 years (20 males;64.5%) with mean follow-up time of 365.8 ± 89 days between first positive PCR and last clinical evaluation. CMR evidence of cardiac involvement was observed in six patients (19.3%)—including two acute (of which one with pericardial inflammation), one subacute and three healed myocarditis. CMR abnormalities were associated with a higher percentage of palpitations (83% vs. 24%, P = 0.013) and chest pain (66% vs. 16%, P = 0.026) during the active phase of COVID-19. In all CMR positive cases, a tailored therapeutic approach was established consisting with the administration of cardioactive therapy with beta-blockers. All cases were uneventful during the follow-up period. Conclusions Our data showed a 19.3% prevalence of unexpected/subclinical myocardial involvement in a cohort of 31 consecutive non-hospitalized patients with previous SARS-CoV-2 infection. CMR findings were retrospectively associated with cardiac symptoms during the acute phase and yielded a change in clinical and therapeutic management in all positive cases. A better knowledge of symptomatic course of COVID-19 could help physicians to adequately select individuals in which CMR may show signs of cardiac damage.

8.
European heart journal supplements : journal of the European Society of Cardiology ; 23(Suppl G), 2021.
Article in English | EuropePMC | ID: covidwho-1601783

ABSTRACT

Aims Cardiovascular sequelae in COVID-19 survivors remain largely unclear and can potentially go unrecognized. Reports on follow-up focused on cardiovascular evaluation after hospital discharge are currently scarce. Aim of this prospective study was to assess cardiovascular sequelae in previously hospitalized COVID-19 survivors. Methods and results The study was conducted at ‘Sapienza’ University of Rome—Policlinico ‘Umberto I’. After 2 months from discharge, n = 230 COVID-19 survivors underwent a follow-up visit at a dedicated ‘post-COVID Outpatient Clinic’. A cardiovascular evaluation including electrocardiogram (ECG), Troponin and echocardiography was performed. Further tests were requested when clinically indicated. Medical history, symptoms, arterial-blood gas, blood tests, chest computed tomography, and treatment of both in-hospital and follow-up evaluation were recorded. A 1-year telephone follow-up was performed. A total of 36 (16%) COVID-19 survivors showed persistence or delayed onset of cardiovascular disease at 2-months follow-up visit. Persistent condition was recorded in 62% of survivors who experienced an in-hospital cardiovascular disease. Delayed cardiovascular involvement included: myocarditis, pericarditis, ventricular disfunction, new onset of systemic hypertension and arrhythmias. At 1-year telephone follow-up, 105 (45%) survivors reported persistent symptoms, with dyspnoea and fatigue being the most frequent. 60% of survivors showed persistent chest CT abnormalities and among those 28% complained of persistent cardiopulmonary symptoms at long term follow-up. Conclusions Our preliminary data showed persistent or delayed onset of cardiovascular involvement (16%) at short-term follow-up and persistent symptoms (45%) at long-term follow-up. These findings suggest the need for monitoring COVID-19 survivors.

9.
Infect Dis Rep ; 13(3): 597-601, 2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1335035

ABSTRACT

We report a case of myopericarditis associated to SARS-CoV-2 infection with necrotizing coronary vasculitis of intramural vessels, giving rise to biventricular apical microaneurysms and to electrical instability. Negativity of myocardial polymerase chain reaction for the most common cardiotropic viruses and for SARS-CoV-2 suggested an immune-mediated myocardial and pericardial inflammatory disease. High dose (1 mg/Kg daily) prednisone and anti-viral (Remdesivir, IDA Business, Carrigtohill, County Cork, T45 DP77, Ireland) therapy led to resolution of cardiac inflammation and ventricular arrhythmias. Morpho-molecular characterization of endomyocardial tissue may improve the outcome in subjects with SARS-CoV-2-associated myopericarditis and coronary vasculitis.

10.
Radiol Med ; 126(10): 1273-1281, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1305169

ABSTRACT

PURPOSE: The aim of the study was to prospectively evaluate the agreement between chest magnetic resonance imaging (MRI) and computed tomography (CT) and to assess the diagnostic performance of chest MRI relative to that of CT during the follow-up of patients recovered from coronavirus disease 2019. MATERIALS AND METHODS: Fifty-two patients underwent both follow-up chest CT and MRI scans, evaluated for ground-glass opacities (GGOs), consolidation, interlobular septal thickening, fibrosis, pleural indentation, vessel enlargement, bronchiolar ectasia, and changes compared to prior CT scans. DWI/ADC was evaluated for signal abnormalities suspicious for inflammation. Agreement between CT and MRI was assessed with Cohen's k and weighted k. Measures of diagnostic accuracy of MRI were calculated. RESULTS: The agreement between CT and MRI was almost perfect for consolidation (k = 1.00) and change from prior CT (k = 0.857); substantial for predominant pattern (k = 0.764) and interlobular septal thickening (k = 0.734); and poor for GGOs (k = 0.339), fibrosis (k = 0.224), pleural indentation (k = 0.231), and vessel enlargement (k = 0.339). Meanwhile, the sensitivity of MRI was high for GGOs (1.00), interlobular septal thickening (1.00), and consolidation (1.00) but poor for fibrotic changes (0.18), pleural indentation (0.23), and vessel enlargement (0.50) and the specificity was overall high. DWI was positive in 46.0% of cases. CONCLUSIONS: The agreement between MRI and CT was overall good. MRI was very sensitive for GGOs, consolidation and interlobular septal thickening and overall specific for most findings. DWI could be a reputable imaging biomarker of inflammatory activity.


Subject(s)
COVID-19/complications , Inflammation/diagnostic imaging , Inflammation/etiology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Aged , COVID-19/physiopathology , Cohort Studies , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Inflammation/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Male , Middle Aged , Prospective Studies , Reproducibility of Results , SARS-CoV-2
11.
Int J Cardiol ; 339: 235-242, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1293831

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) can occur in COVID-19 and has impact on clinical course. Data on CVD prevalence in hospitalized COVID-19 patients and sequelae in survivors is limited. Aim of this prospective study carried out on consecutive unselected COVID-19 population, was to assess: 1) CVD occurrence among hospitalized COVID-19 patients, 2) persistence or new onset of CVD at one-month and one-year follow-up. METHODS: Over 30 days n = 152 COVID-19 patients underwent cardiovascular evaluation. Standard electrocardiogram (ECG), Troponin and echocardiography were integrated by further tests when indicated. Medical history, arterial blood gas, blood tests, chest computed tomography and treatment were recorded. CVD was defined as the occurrence of a new condition during the hospitalization for COVID-19. Survivors attended a one-month follow-up visit and a one-year telephone follow-up. RESULTS: Forty-two patients (28%) experienced a wide spectrum of CVD with acute myocarditis being the most frequent. Death occurred in 32 patients (21%) and more frequently in patients who developed CVD (p = 0.032). After adjustment for confounders, CVD was independently associated with death occurrence. At one-month follow-up visit, 7 patients (9%) presented persistent or delayed CVD. At one-year telephone follow-up, 57 patients (48%) reported persistent symptoms. CONCLUSION: Cardiovascular evaluation in COVID-19 patients is crucial since the occurrence of CVD in hospitalized COVID-19 patients is common (28%), requires specific treatment and increases the risk of in-hospital mortality. Persistence or delayed presentation of CVD at 1-month (9%) and persistent symptoms at 1-year follow-up (48%) suggest the need for monitoring COVID-19 survivors.


Subject(s)
COVID-19 , Myocarditis , Follow-Up Studies , Hospitals , Humans , Prospective Studies , SARS-CoV-2
12.
J Cardiovasc Magn Reson ; 23(1): 68, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1262508

ABSTRACT

BACKGROUND: Early detection of myocardial involvement can be relevant in coronavirus disease 2019 (COVID-19) patients to timely target symptomatic treatment and decrease the occurrence of the cardiac sequelae of the infection. The aim of the present study was to assess the clinical value of cardiovascular magnetic resonance (CMR) in characterizing myocardial damage in active COVID-19 patients, through the correlation between qualitative and quantitative imaging biomarkers with clinical and laboratory evidence of myocardial injury. METHODS: In this retrospective observational cohort study, we enrolled 27 patients with diagnosis of active COVID-19 and suspected cardiac involvement, referred to our institution for CMR between March 2020 and January 2021. Clinical and laboratory characteristics, including high sensitivity troponin T (hs-cTnT), and CMR imaging data were obtained. Relationships between CMR parameters, clinical and laboratory findings were explored. Comparisons were made with age-, sex- and risk factor-matched control group of 27 individuals, including healthy controls and patients without other signs or history of myocardial disease, who underwent CMR examination between January 2020 and January 2021. RESULTS: The median (IQR) time interval between COVID-19 diagnosis and CMR examination was 20 (13.5-31.5) days. Hs-cTnT values were collected within 24 h prior to CMR and resulted abnormally increased in 18 patients (66.6%). A total of 20 cases (74%) presented tissue signal abnormalities, including increased myocardial native T1 (n = 11), myocardial T2 (n = 14) and extracellular volume fraction (ECV) (n = 10), late gadolinium enhancement (LGE) (n = 12) or pericardial enhancement (n = 2). A CMR diagnosis of myocarditis was established in 9 (33.3%), pericarditis in 2 (7.4%) and myocardial infarction with non-obstructive coronary arteries in 3 (11.11%) patients. T2 mapping values showed a moderate positive linear correlation with Hs-cTnT (r = 0.58; p = 0.002). A high degree positive linear correlation between ECV and Hs-cTnT was also found (r 0.77; p < 0.001). CONCLUSIONS: CMR allows in vivo recognition and characterization of myocardial damage in a cohort of selected COVID-19 individuals by means of a multiparametric scanning protocol including conventional imaging and T1-T2 mapping sequences. Abnormal T2 mapping was the most commonly abnormality observed in our cohort and positively correlated with hs-cTnT values, reflecting the predominant edematous changes characterizing the active phase of disease.


Subject(s)
COVID-19/complications , Cardiomyopathies/complications , Cardiomyopathies/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Age Factors , Cohort Studies , Heart/diagnostic imaging , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sex Factors
13.
Radiol Med ; 126(9): 1170-1180, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1252205

ABSTRACT

PURPOSE: To evaluate CT and laboratory changes in COVID-19 patients treated with tocilizumab, compared to a control group, throughout a combined semiquantitative and texture analysis of images. MATERIALS AND METHODS: From March 11 to April 20, 2020, 57 SARS-CoV-2 positive patients were retrospectively compared: group T (n = 30) receiving tocilizumab and group non-T (n = 27) undergoing only antivirals/antimalarials. Chest-CT and laboratory findings were analyzed before and after treatment. CT evaluation included both semiquantitative scoring and texture analysis of all parenchymal lesions. Survival and recovery analyses were also provided with Kaplan-Meier method. RESULTS: In group T, no significant differences were found for CT score after treatment, while several texture features significantly changed, including mean attenuation (p < 0.0001), skewness (p < 0.0001), entropy (p = 0.0146) and higher-order parameters, suggesting considerable fading of parenchymal lesions. PaO2/FiO2 mean value significantly increased after treatment, from 240 ± 93 to 363 ± 107 (p = 0.0003), with parallel decrease in inflammatory biomarkers (CRP, D-dimer and LDH). In group non-T, CT scoring, texture and laboratory parameters showed significant worsening at follow-up. Findings were clinically associated with opposite trends between two groups, with reduction of severe cases in group T (from 21/30 to 5/30; p < 0.0001) as compared to a significant worsening in group non-T (severe cases increasing from 6/27 to 14/27; p = 0.0473). Probability of discharge was significantly higher in group T (p < 0.0001), as well as survival rate, although not statistically significant. CONCLUSIONS: Our results suggest the potential role of CT texture analysis for assessing response to treatment in COVID-19 pneumonia, using Tocilizumab, as compared to semiquantitative evaluation, providing insight into the intrinsic parenchymal changes.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Lung/diagnostic imaging , Receptors, Interleukin-6/antagonists & inhibitors , Tomography, X-Ray Computed , Adult , Aged , Aged, 80 and over , COVID-19/diagnostic imaging , COVID-19/mortality , Female , Humans , Kaplan-Meier Estimate , Lung/pathology , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Survival Analysis , Treatment Outcome
15.
Insights Imaging ; 12(1): 28, 2021 Feb 24.
Article in English | MEDLINE | ID: covidwho-1099894

ABSTRACT

Clinical manifestations of COVID-19 patients are dominated by respiratory symptoms, but cardiac complications are commonly observed and associated with increased morbidity and mortality. Underlying pathological mechanisms of cardiac injury are still not entirely elucidated, likely depending on a combination of direct viral damage with an uncontrolled immune activation. Cardiac involvement in these patients ranges from a subtle myocardial injury to cardiogenic shock. Advanced cardiac imaging plays a key role in discriminating the broad spectrum of differential diagnoses. Present article aims to review the value of advanced multimodality imaging in patients with suspected SARS-CoV-2-related cardiovascular involvement and its essential role in risk stratification and tailored treatment strategies. Based on our experience, we also sought to suggest possible diagnostic algorithms for the rationale utilization of advanced imaging tools, such as cardiac CT and CMR, avoiding unnecessary examinations and diagnostic delays.

16.
Eur Heart J Cardiovasc Imaging ; 22(7): 728-731, 2021 06 22.
Article in English | MEDLINE | ID: covidwho-978588

ABSTRACT

We proposed a combined cardiothoracic-MRI (CaTh-MRI) protocol for the comprehensive assessment of cardiovascular structures, lung parenchyma, and pulmonary arterial tree, in COVID-19 patients with progressive worsening of clinical conditions and/or suspicion of acute-onset myocardial inflammation. A 25-minutes fast protocol was also conceived for unstable or uncooperative patients by restricting the number of sequences to those necessary to rule out myocardial and to assess pulmonary involvement. In patients requiring CMR characterization of myocardial damage, the addition of lung and thoracic vessel evaluation is of clinical benefit at a minimal time expense.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Pulmonary Artery/diagnostic imaging , SARS-CoV-2
17.
Eur J Radiol ; 130: 109202, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-684452

ABSTRACT

BACKGROUND: So far, only a few studies evaluated the correlation between CT features and clinical outcome in patients with COVID-19 pneumonia. PURPOSE: To evaluate CT ability in differentiating critically ill patients requiring invasive ventilation from patients with less severe disease. METHODS: We retrospectively collected data from patients admitted to our institution for COVID-19 pneumonia between March 5th-24th. Patients were considered critically ill or non-critically ill, depending on the need for mechanical ventilation. CT images from both groups were analyzed for the assessment of qualitative features and disease extension, using a quantitative semiautomatic method. We evaluated the differences between the two groups for clinical, laboratory and CT data. Analyses were conducted on a per-protocol basis. RESULTS: 189 patients were analyzed. PaO2/FIO2 ratio and oxygen saturation (SaO2) were decreased in critically ill patients. At CT, mixed pattern (ground glass opacities (GGO) and consolidation) and GGO alone were more frequent respectively in critically ill and in non-critically ill patients (p < 0.05). Lung volume involvement was significantly higher in critically ill patients (38.5 % vs. 5.8 %, p < 0.05). A cut-off of 23.0 % of lung involvement showed 96 % sensitivity and 96 % specificity in distinguishing critically ill patients from patients with less severe disease. The fraction of involved lung was related to lactate dehydrogenase (LDH) levels, PaO2/FIO2 ratio and SaO2 (p < 0.05). CONCLUSION: Lung disease extension, assessed using quantitative CT, has a significant relationship with clinical severity and may predict the need for invasive ventilation in patients with COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , COVID-19 , Critical Illness , Evaluation Studies as Topic , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Research Design , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sensitivity and Specificity
18.
J Cardiovasc Magn Reson ; 22(1): 58, 2020 08 10.
Article in English | MEDLINE | ID: covidwho-704272

ABSTRACT

During the peak phase of the COVID-19 pandemic, alterations of standard operating procedures were necessary for health systems to protect patients and healthcare workers and ensure access to vital hospital resources. As the peak phase passes, re-activation plans are required to safely manage increasing clinical volumes. In the context of cardiovascular magnetic resonance (CMR), re-activation objectives include continued performance of urgent CMR studies and resumption of CMR in patients with semi-urgent and elective indications in an environment that is safe for both patients and health care workers.


Subject(s)
Betacoronavirus , Cardiovascular Diseases/diagnostic imaging , Coronavirus Infections/prevention & control , Magnetic Resonance Imaging/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Practice Guidelines as Topic , COVID-19 , Cardiovascular System/diagnostic imaging , Humans , Predictive Value of Tests , SARS-CoV-2 , Societies, Medical
19.
Eur Radiol ; 30(12): 6808-6817, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-629489

ABSTRACT

OBJECTIVES: To correlate a CT-based semi-quantitative score of pulmonary involvement in COVID-19 pneumonia with clinical staging of disease and laboratory findings. We also aimed to investigate whether CT findings may be predictive of patients' outcome. METHODS: From March 6 to March 22, 2020, 130 symptomatic SARS-CoV-2 patients were enrolled for this single-center analysis and chest CT examinations were retrospectively evaluated. A semi-quantitative CT score was calculated based on the extent of lobar involvement (0:0%; 1, < 5%; 2:5-25%; 3:26-50%; 4:51-75%; 5, > 75%; range 0-5; global score 0-25). Data were matched with clinical stages and laboratory findings. Survival curves and univariate and multivariate analyses were performed to evaluate the role of CT score as a predictor of patients' outcome. RESULTS: Ground glass opacities were predominant in early-phase (≤ 7 days since symptoms' onset), while crazy-paving pattern, consolidation, and fibrosis characterized late-phase disease (> 7 days). CT score was significantly higher in critical and severe than in mild stage (p < 0.0001), and among late-phase than early-phase patients (p < 0.0001). CT score was significantly correlated with CRP (p < 0.0001, r = 0.6204) and D-dimer (p < 0.0001, r = 0.6625) levels. A CT score of ≥ 18 was associated with an increased mortality risk and was found to be predictive of death both in univariate (HR, 8.33; 95% CI, 3.19-21.73; p < 0.0001) and multivariate analysis (HR, 3.74; 95% CI, 1.10-12.77; p = 0.0348). CONCLUSIONS: Our preliminary data suggest the potential role of CT score for predicting the outcome of SARS-CoV-2 patients. CT score is highly correlated with laboratory findings and disease severity and might be beneficial to speed-up diagnostic workflow in symptomatic cases. KEY POINTS: • CT score is positively correlated with age, inflammatory biomarkers, severity of clinical categories, and disease phases. • A CT score ≥ 18 has shown to be highly predictive of patient's mortality in short-term follow-up. • Our multivariate analysis demonstrated that CT parenchymal assessment may more accurately reflect short-term outcome, providing a direct visualization of anatomic injury compared with non-specific inflammatory biomarkers.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnosis , Tomography, X-Ray Computed/methods , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Pneumonia, Viral/epidemiology , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
20.
Int J Cardiovasc Imaging ; 36(10): 1801-1810, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-361449

ABSTRACT

The severe acute respiratory syndrome coronavirus 2019 (SARS-CoV-2) pandemic currently constitutes a significant burden on worldwide health care systems, with important implications on many levels, including radiology departments. Given the established fundamental role of cardiovascular imaging in modern healthcare, and the specific value of cardiopulmonary radiology in COVID-19 patients, departmental organisation and imaging programs need to be restructured during the pandemic in order to provide access to modern cardiovascular services to both infected and non-infected patients while ensuring safety for healthcare professionals. The uninterrupted availability of cardiovascular radiology services remains, particularly during the current pandemic outbreak, crucial for the initial evaluation and further follow-up of patients with suspected or known cardiovascular diseases in order to avoid unnecessary complications. Suspected or established COVID-19 patients may also have concomitant cardiovascular symptoms and require further imaging investigations. This statement by the European Society of Cardiovascular Radiology (ESCR) provides information on measures for safety of healthcare professionals and recommendations for cardiovascular imaging during the pandemic in both non-infected and COVID-19 patients.


Subject(s)
Betacoronavirus , Cardiac Imaging Techniques/methods , Cardiovascular Diseases/diagnostic imaging , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Disinfection , Europe , Humans , Patient Safety , Personal Protective Equipment , SARS-CoV-2 , Societies, Medical
SELECTION OF CITATIONS
SEARCH DETAIL