Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 12(6)2020 05 30.
Article in English | MEDLINE | ID: covidwho-1389514

ABSTRACT

Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Genes, Reporter/physiology , RNA Viruses/drug effects , Replicon/physiology , Animals , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Cricetinae , Humans , RNA Viruses/genetics , Transfection , Vero Cells
2.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1355016

ABSTRACT

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Subject(s)
Crotalid Venoms/chemistry , Dimerization , Papain/antagonists & inhibitors , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Molecular Docking Simulation , Papain/chemistry , Papain/metabolism , Peptides/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Conformation , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL