Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321371

ABSTRACT

Background The long-term consequences of human umbilical cord-derived mesenchymal stem cell (UC-MSC) treatment for COVID-19 patients are yet to be reported. This study assessed the 1-year outcomes in patients with severe COVID-19, who were recruited in our previous UC-MSC clinical trial.Methods: In this prospective, longitudinal, cohort study, 100 patients enrolled in our phase 2 trial were prospectively followed up at 3-month intervals for 1 year to evaluate the long-term safety and effectiveness of UC-MSC treatment. The primary endpoint was an altered proportion of whole-lung lesion volumes measured by high-resolution CT. Other imaging outcomes, 6-minute walking distance (6-MWD), lung function, plasma biomarkers, and adverse events were also recorded and analyzed. This trial was registered with ClinicalTrials.gov (NCT04288102).Findings: Within 3 months, MSC administration exerted numerical improvement in whole-lung lesion volume compared with the placebo, leading to a significant difference of −10.82% (95% CI: −20.69%, −1.46%, P=0.030) on day 10. MSC also reduced the proportion of solid component lesion volume compared with the placebo at each follow-up point, with a significant difference of − 9.02% (95%CI: − 17.44%, − 0.10%, P=0.045) at month 9. More interestingly, 17.86% (10/56) of patients in the MSC group had normal CT images at month 12 ( P= 0.013), but none in the placebo group. The incidence of symptoms was lower in the MSC group than in the placebo group at each follow-up time, particularly sleep difficulties at month 3 (OR 0.19, 95% CI 0.07,0.50;P=0.001), and usual activity at month 12 (OR 0.15, 95% CI 0.03,0.79;P=0.018). Neutralizing antibodies were all positive, with a similar median inhibition rate (61.6% vs. 67.55%) in both groups at month 12. No difference in adverse events at the 1-year follow-up and tumor markers at month 12 were observed between the two groups.Interpretation: UC-MSC administration achieves a long-term benefit in the recovery of lung lesions and symptoms in COVID-19 patients.Trial Registration: This trial was registered with ClinicalTrials.gov (NCT04288102).Funding The National Key R&D Program of China, the Innovation Groups of the National Natural Science Foundation of China, and the National Science and Technology Major Project.Declaration of Interest: None to declare. Ethical Approval: This study was approved by the Ethics Committee of the Fifth Medical Center, Chinese PLA General Hospital (2020-013-D).

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321366

ABSTRACT

Background: Treatment of severe Corona Virus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC‑MSCs) to treat patients with severe COVID-19 with lung damage, based on our phase 1 data.Methods: In this randomised, double-blind, and placebo-controlled trial, we recruited 101 eligible patients with severe COVID-19 with lung damage aged between 18–74 years from two hospitals. Enrolled patients were randomly assigned at a 2:1 ratio to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. We excluded patients with malignant tumours, shock, or other organ failure. The primary endpoint was an altered proportion of whole lung lesion areas from baseline to day 28, measured by chest computed tomography. Other imaging outcomes, 6-minute walk test, maximum vital capacity, diffusing capacity, plasma biomarkers, and adverse events were recorded and analysed. Primary analysis was done in the modified intention-to-treat (mITT) population and safety analysis was done in all patients who started their assigned treatment. Findings: From March 5, 2020, to March 28, 2020, 100 patients were finally enrolled and received either UC-MSCs (n = 65) or placebo (n = 35). During follow-up, the patients receiving UC-MSCs exhibited a trend of numerical improvement in whole lung lesions from baseline to day 28 compared with the placebo cases. UC-MSCs administration significantly reduced the proportions of consolidation lesions from baseline to day 28 in the treated patients compared with the placebo subjects. The 6-minute walk test showed an increased distance in patients treated with UC-MSCs. Notably, UC-MSCs delivery was well tolerated, with no serious adverse events.Interpretation: UC-MSCs treatment is a safe and potentially effective therapeutic approach for patients with severe COVID‑19. The trial suggests that UC-MSCs administration might benefit patients with COVID-19 with lung damage at the convalescent stage as well as the progression stage.Trial Registration: This trial is registered with ClinicalTrials.gov, number NCT04288102.Funding Statement: This trial was supported by The National Key R&D Program of China (2020YFC0841900, 2020YFC0844000, 2020YFC08860900);The Innovation Groups of the National Natural Science Foundation of China (81721002);The National Science and Technology Major Project (2017YFA0105703).Declaration of Interests: All authors declare no competing interests.Ethics Approval Statement: Ethical approval was obtained from the institutional review boards of each participating hospital. Written informed consent was obtained from all the enrolled patients or their legal representatives if they were unable to provide consent.

3.
EBioMedicine ; 75: 103789, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587925

ABSTRACT

BACKGROUND: The long-term consequences of human umbilical cord-derived mesenchymal stem cell (UC-MSC) treatment for COVID-19 patients are yet to be reported. This study assessed the 1-year outcomes in patients with severe COVID-19, who were recruited in our previous UC-MSC clinical trial. METHODS: In this prospective, longitudinal, cohort study, 100 patients enrolled in our phase 2 trial were prospectively followed up at 3-month intervals for 1 year to evaluate the long-term safety and effectiveness of UC-MSC treatment. The primary endpoint was an altered proportion of whole-lung lesion volumes measured by high-resolution CT. Other imaging outcomes, 6 min walking distance (6-MWD), lung function, plasma biomarkers, and adverse events were also recorded and analyzed. This trial was registered with ClinicalTrials.gov (NCT04288102). FINDINGS: MSC administration improved in whole-lung lesion volume compared with the placebo with a difference of -10.8% (95% CI: -20.7%, -1.5%, p = 0.030) on day 10. MSC also reduced the proportion of solid component lesion volume compared with the placebo at each follow-up point. More interestingly, 17.9% (10/56) of patients in the MSC group had normal CT images at month 12, but none in the placebo group (p = 0.013). The incidence of symptoms was lower in the MSC group than in the placebo group at each follow-up time. Neutralizing antibodies were all positive, with a similar median inhibition rate (61.6% vs. 67.6%) in both groups at month 12. No difference in adverse events at the 1-year follow-up and tumor markers at month 12 were observed between the two groups. INTERPRETATION: UC-MSC administration achieves a long-term benefit in the recovery of lung lesions and symptoms in COVID-19 patients. FUNDING: The National Key R&D Program of China, the Innovation Groups of the National Natural Science Foundation of China, and the National Science and Technology Major Project.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Aged , Allografts , Double-Blind Method , Female , Follow-Up Studies , Humans , Male , Middle Aged , Patient Acuity
4.
Signal Transduct Target Ther ; 6(1): 58, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078577

ABSTRACT

Treatment of severe Coronavirus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data. In this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned at a 2:1 ratio to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test (6-MWT), maximum vital capacity, diffusing capacity, and adverse events were recorded and analyzed. In all, 100 COVID-19 patients were finally received either UC-MSCs (n = 65) or placebo (n = 35). UC-MSCs administration exerted numerical improvement in whole lung lesion volume from baseline to day 28 compared with the placebo (the median difference was -13.31%, 95% CI -29.14%, 2.13%, P = 0.080). UC-MSCs significantly reduced the proportions of solid component lesion volume compared with the placebo (median difference: -15.45%; 95% CI -30.82%, -0.39%; P = 0.043). The 6-MWT showed an increased distance in patients treated with UC-MSCs (difference: 27.00 m; 95% CI 0.00, 57.00; P = 0.057). The incidence of adverse events was similar in the two groups. These results suggest that UC-MSCs treatment is a safe and potentially effective therapeutic approach for COVID-19 patients with lung damage. A phase 3 trial is required to evaluate effects on reducing mortality and preventing long-term pulmonary disability. (Funded by The National Key R&D Program of China and others. ClinicalTrials.gov number, NCT04288102.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2 , Umbilical Cord , Aged , Allografts , COVID-19/mortality , COVID-19/physiopathology , Double-Blind Method , Female , Humans , Male , Middle Aged , Treatment Outcome
5.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Article in English | MEDLINE | ID: covidwho-710376

ABSTRACT

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon Type I/metabolism , Pneumonia, Viral/immunology , Receptors, Immunologic/metabolism , Adolescent , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA-Seq , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis
6.
Cell Metab ; 32(2): 188-202.e5, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612608

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented threat to global public health. Herein, we utilized a combination of targeted and untargeted tandem mass spectrometry to analyze the plasma lipidome and metabolome in mild, moderate, and severe COVID-19 patients and healthy controls. A panel of 10 plasma metabolites effectively distinguished COVID-19 patients from healthy controls (AUC = 0.975). Plasma lipidome of COVID-19 resembled that of monosialodihexosyl ganglioside (GM3)-enriched exosomes, with enhanced levels of sphingomyelins (SMs) and GM3s, and reduced diacylglycerols (DAGs). Systems evaluation of metabolic dysregulation in COVID-19 was performed using multiscale embedded differential correlation network analyses. Using exosomes isolated from the same cohort, we demonstrated that exosomes of COVID-19 patients with elevating disease severity were increasingly enriched in GM3s. Our work suggests that GM3-enriched exosomes may partake in pathological processes related to COVID-19 pathogenesis and presents the largest repository on the plasma lipidome and metabolome distinct to COVID-19.


Subject(s)
Coronavirus Infections/blood , Coronavirus Infections/pathology , Exosomes/metabolism , G(M3) Ganglioside/blood , Gangliosides/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19 , Diglycerides/blood , Female , Humans , Male , Metabolome/physiology , Metabolomics/methods , Middle Aged , Pandemics , SARS-CoV-2 , Sphingomyelins/blood , Tandem Mass Spectrometry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL