Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324160

ABSTRACT

The unprecedented coronavirus disease 2019 (COVID-19) epidemic has created a worldwide public health emergency, and there is an urgent need to develop an effective vaccine to control this severe infectious disease. Here, we found that a single vaccination with a replication-defective human type 5 adenovirus encoding the SARS-CoV-2 spike protein (Ad5-nCoV) protected mice completely against SARS-CoV-2 infection in the upper and lower respiratory tracts. Additionally, a single vaccination with Ad5-nCoV protected ferrets from SARS-CoV-2 infection in the upper respiratory tract. This study suggested that a combination of intramuscular and mucosal vaccination maybe provide a desirable protective efficacy and different Ad5-nCoV delivery modes are worth further investigation in human clinical trials.

2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1650946

ABSTRACT

The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.


Subject(s)
Amino Alcohols/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/pharmacology , Phenyl Ethers/pharmacology , Receptors, Virus/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Sulfhydryl Compounds/pharmacology , Allosteric Regulation , Amino Alcohols/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Cell Line , Disulfides/antagonists & inhibitors , Disulfides/chemistry , Disulfides/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Oxidation-Reduction , Phenyl Ethers/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds/chemistry
4.
World J Pediatr ; 17(4): 375-384, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1338281

ABSTRACT

BACKGROUND: Severe cases of coronavirus disease 2019 (COVID-19) among pediatric patients are more common in children less than 1 year of age. Our aim is to address the underlying role of immunity and inflammation conditions among different age groups of pediatric patients. METHODS: We recruited pediatric patients confirmed of moderate COVID-19 symptoms, admitted to Wuhan Children's Hospital from January 28th to April 1st in 2020. Patients were divided into four age groups (≤ 1, 1-6, 7-10, and 11-15 years). Demographic information, clinical characteristics, laboratory results of lymphocyte subsets test, immune and inflammation related markers were all evaluated. RESULTS: Analysis included 217/241 (90.0%) of patients with moderate clinical stage disease. Average recovery time of children more than 6 years old was significantly shorter than of children younger than 6 years (P = 0.001). Reduced neutrophils and increased lymphocytes were significantly most observed among patients under 1 year old (P < 0.01). CD19+ B cells were the only significantly elevated immune cells, especially among patients under 1 year old (cell proportion: n = 12, 30.0%, P < 0.001; cell count: n = 13, 32.5%, P < 0.001). While, low levels of immune related makers, such as immunoglobulin (Ig) G (P < 0.001), IgA (P < 0.001), IgM (P < 0.001) and serum complement C3c (P < 0.001), were also mostly found among patients under 1 year old, together with elevated levels of inflammation related markers, such as tumor necrosis factor γ (P = 0.007), interleukin (IL)-10 (P = 0.011), IL-6 (P = 0.008), lactate dehydrogenase (P < 0.001), and procalcitonin (P = 0.007). CONCLUSION: The higher rate of severe cases and long course of COVID-19 among children under 1 year old may be due to the lower production of antibodies and serum complements of in this age group.


Subject(s)
COVID-19/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Biomarkers/blood , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Cytokines/immunology , Female , Hospitals, Pediatric , Humans , Infant , Lymphocyte Subsets , Male , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/epidemiology
5.
Signal Transduct Target Ther ; 5(1): 283, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-957563

ABSTRACT

In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Subject(s)
Basigin/genetics , COVID-19/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Basigin/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , Lung/immunology , Lung/pathology , Lung/virology , Mice , Pandemics , Protein Binding/immunology , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
6.
Nat Commun ; 11(1): 4081, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-717117

ABSTRACT

The unprecedented coronavirus disease 2019 (COVID-19) epidemic has created a worldwide public health emergency, and there is an urgent need to develop an effective vaccine to control this severe infectious disease. Here, we find that a single vaccination with a replication-defective human type 5 adenovirus encoding the SARS-CoV-2 spike protein (Ad5-nCoV) protect mice completely against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts. Additionally, a single vaccination with Ad5-nCoV protects ferrets from wild-type SARS-CoV-2 infection in the upper respiratory tract. This study suggests that the mucosal vaccination may provide a desirable protective efficacy and this delivery mode is worth further investigation in human clinical trials.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Disease Models, Animal , Drug Design , Female , Genetic Vectors , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
7.
Science ; 369(6504): 650-655, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-610891

ABSTRACT

Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal domain (NTD) of the S protein by determining with cryo-eletron microscopy its structure in complex with the S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adult , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigens, Viral/immunology , B-Lymphocytes/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/therapy , Coronavirus Nucleocapsid Proteins , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Genes, Immunoglobulin Heavy Chain , Humans , Immunologic Memory , Middle Aged , Mutation , Nucleocapsid Proteins/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/therapy , Protein Domains , Protein Interaction Domains and Motifs/immunology , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL