Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1276013

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
2.
J Infect Chemother ; 27(7): 1058-1062, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1188757

ABSTRACT

INTRODUCTION: Rapid antigen detection (RAD) tests are convenient tools for detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinics, and testing using saliva samples could decrease the risk of infection during sample collection. This study aimed to assess the accuracy of the SARS-CoV-2 RAD for testing of nasopharyngeal swab specimens and saliva samples in comparison with the RT-PCR tests and viral culture for detecting viable virus. METHODS: One hundred seventeen nasopharyngeal swab specimens and 73 saliva samples with positive results on RT-PCR were used. Residual samples were assayed using a commercially available RAD test immediately, and its positivity was determined at various time points during the clinical course. The concordance between 54 nasopharyngeal swab samples and saliva samples that were collected simultaneously was determined. Viral culture was performed on 117 samples and compared with the results of the RAD test. RESULTS: The positive rate of RAD test using saliva samples was low throughout the clinical course. Poor concordance was observed between nasopharyngeal swab specimens and saliva samples (75.9%, kappa coefficient 0.310). However, a substantially high concordance between the RAD test and viral culture was observed in both nasopharyngeal swab specimens (86.8%, kappa coefficient 0.680) and saliva samples (95.1%, kappa coefficient 0.643). CONCLUSIONS: The sensitivity of the SARS-CoV-2 RAD test was insufficient, particularly for saliva samples. However, a substantially high concordance with viral culture suggests its potential utility as an auxiliary test for estimating SARS-CoV-2 viability.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nasopharynx , Reverse Transcriptase Polymerase Chain Reaction , Saliva
3.
Viruses ; 12(12)2020 12 10.
Article in English | MEDLINE | ID: covidwho-970091

ABSTRACT

Reverse transcription-quantitative PCR (RT-qPCR)-based tests are widely used to diagnose coronavirus disease 2019 (COVID-19). As a result that these tests cannot be done in local clinics where RT-qPCR testing capability is lacking, rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are used for rapid diagnosis. However, their sensitivity compared with each other and with RT-qPCR and infectious virus isolation has not been examined. Here, we compared the sensitivity among four RATs by using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates and several types of COVID-19 patient specimens and compared their sensitivity with that of RT-qPCR and infectious virus isolation. Although the RATs read the samples containing large amounts of virus as positive, even the most sensitive RAT read the samples containing small amounts of virus as negative. Moreover, all RATs tested failed to detect viral antigens in several specimens from which the virus was isolated. The current RATs will likely miss some COVID-19 patients who are shedding infectious SARS-CoV-2.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Systems , SARS-CoV-2/isolation & purification , False Negative Reactions , Humans , Immunoassay , Real-Time Polymerase Chain Reaction , SARS-CoV-2/immunology , Sensitivity and Specificity , Specimen Handling
4.
mSphere ; 5(5)2020 10 21.
Article in English | MEDLINE | ID: covidwho-889855

ABSTRACT

Guidelines from the CDC and the WHO recommend the wearing of face masks to prevent the spread of coronavirus (CoV) disease 2019 (COVID-19); however, the protective efficiency of such masks against airborne transmission of infectious severe acute respiratory syndrome CoV-2 (SARS-CoV-2) droplets/aerosols is unknown. Here, we developed an airborne transmission simulator of infectious SARS-CoV-2-containing droplets/aerosols produced by human respiration and coughs and assessed the transmissibility of the infectious droplets/aerosols and the ability of various types of face masks to block the transmission. We found that cotton masks, surgical masks, and N95 masks all have a protective effect with respect to the transmission of infective droplets/aerosols of SARS-CoV-2 and that the protective efficiency was higher when masks were worn by a virus spreader. Importantly, medical masks (surgical masks and even N95 masks) were not able to completely block the transmission of virus droplets/aerosols even when completely sealed. Our data will help medical workers understand the proper use and performance of masks and determine whether they need additional equipment to protect themselves from infected patients.IMPORTANCE Airborne simulation experiments showed that cotton masks, surgical masks, and N95 masks provide some protection from the transmission of infective SARS-CoV-2 droplets/aerosols; however, medical masks (surgical masks and even N95 masks) could not completely block the transmission of virus droplets/aerosols even when sealed.


Subject(s)
Aerosols , Air Microbiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Masks/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Health Personnel/education , Humans , Masks/classification , SARS-CoV-2
5.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-611003

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL