Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
iScience ; 26(6): 106955, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2328292

ABSTRACT

Several antibody therapeutics have been developed against SARS-CoV-2; however, they have attenuated neutralizing ability against variants. In this study, we generated multiple broadly neutralizing antibodies from B cells of convalescents, by using two types of receptor-binding domains, Wuhan strain and the Gamma variant as bait. From 172 antibodies generated, six antibodies neutralized all strains prior to the Omicron variant, and the five antibodies were able to neutralize some of the Omicron sub-strains. Structural analysis showed that these antibodies have a variety of characteristic binding modes, such as ACE2 mimicry. We subjected a representative antibody to the hamster infection model after introduction of the N297A modification, and observed a dose-dependent reduction of the lung viral titer, even at a dose of 2 mg/kg. These results demonstrated that our antibodies have certain antiviral activity as therapeutics, and highlighted the importance of initial cell-screening strategy for the efficient development of therapeutic antibodies.

2.
EBioMedicine ; 91: 104561, 2023 May.
Article in English | MEDLINE | ID: covidwho-2295239

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS: We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS: S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION: Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Virulence/genetics , Membrane Fusion
4.
Influenza and other respiratory viruses ; 17(3), 2023.
Article in English | EuropePMC | ID: covidwho-2259783

ABSTRACT

Background Reverse genetics systems to rescue viruses from modified DNA are useful tools to investigate the molecular mechanisms of viruses. The COVID‐19 pandemic prompted the development of several reverse genetics systems for SARS‐CoV‐2. The circular polymerase extension reaction (CPER) method enables the rapid generation of recombinant SARS‐CoV‐2;however, such PCR‐based approaches could introduce unwanted mutations due to PCR errors. Methods To compare the accuracy of CPER and a classic reverse genetics method using bacterial artificial chromosome (BAC), SARS‐CoV‐2 Wuhan/Hu‐1/2019 was generated five times using BAC and five times using CPER. These 10 independent virus stocks were then deep sequencing, and the number of substitutions for which the frequency was greater than 10% was counted. Results No nucleotide substitutions with a frequency of greater than 10% were observed in all five independent virus stocks generated by the BAC method. In contrast, three to five unwanted nucleotide substitutions with a frequency of more than 10% were detected in four of the five virus stocks generated by the CPER. Furthermore, four substitutions with frequencies greater than 20% were generated in three virus stocks by using the CPER. Conclusions We found that the accuracy of the CPER method is lower than that of the BAC method. Our findings suggest care should be used when employing the CPER method.

5.
Nat Commun ; 14(1): 1620, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2284921

ABSTRACT

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Biological Assay , DNA Replication , India , Mesocricetus
7.
Influenza Other Respir Viruses ; 17(3): e13109, 2023 03.
Article in English | MEDLINE | ID: covidwho-2259784

ABSTRACT

Background: Reverse genetics systems to rescue viruses from modified DNA are useful tools to investigate the molecular mechanisms of viruses. The COVID-19 pandemic prompted the development of several reverse genetics systems for SARS-CoV-2. The circular polymerase extension reaction (CPER) method enables the rapid generation of recombinant SARS-CoV-2; however, such PCR-based approaches could introduce unwanted mutations due to PCR errors. Methods: To compare the accuracy of CPER and a classic reverse genetics method using bacterial artificial chromosome (BAC), SARS-CoV-2 Wuhan/Hu-1/2019 was generated five times using BAC and five times using CPER. These 10 independent virus stocks were then deep sequencing, and the number of substitutions for which the frequency was greater than 10% was counted. Results: No nucleotide substitutions with a frequency of greater than 10% were observed in all five independent virus stocks generated by the BAC method. In contrast, three to five unwanted nucleotide substitutions with a frequency of more than 10% were detected in four of the five virus stocks generated by the CPER. Furthermore, four substitutions with frequencies greater than 20% were generated in three virus stocks by using the CPER. Conclusions: We found that the accuracy of the CPER method is lower than that of the BAC method. Our findings suggest care should be used when employing the CPER method.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Chromosomes, Artificial, Bacterial/genetics , Pandemics , Reverse Genetics/methods
9.
iScience ; 25(12): 105596, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2120399

ABSTRACT

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

10.
Nature ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2096734

ABSTRACT

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern1-4. Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral entry, raising concerns that the replication capacity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here we have evaluated the replicative ability and pathogenicity of BA.4 and BA.5 isolates in wild-type Syrian hamsters, human ACE2 (hACE2) transgenic hamsters and hACE2 transgenic mice. We have observed no obvious differences among BA.2, BA.4 and BA.5 isolates in growth ability or pathogenicity in rodent models, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 clinical isolates have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2.

11.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915276

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
12.
Nat Microbiol ; 7(8): 1252-1258, 2022 08.
Article in English | MEDLINE | ID: covidwho-1890192

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Humans , Mesocricetus , RNA, Viral
13.
mSphere ; 7(2): e0094121, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1816706

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) is an acute respiratory infection transmitted by droplets, aerosols, and contact. Controlling the spread of COVID-19 and developing effective decontamination options are urgent issues for the international community. Here, we report the quantitative inactivation of SARS-CoV-2 in liquid and aerosolized samples by a state-of-the-art, high-power, AlGaN-based, single-chip compact deep-UV (DUV) light-emitting diode (LED) that produces a record continuous-wave output power of 500 mW at its peak emission wavelength of 265 nm. Using this DUV-LED, we observed a greater-than-5-log reduction in infectious SARS-CoV-2 in liquid samples within very short irradiation times (<0.4 s). When we quantified the efficacy of the 265-nm DUV-LED in inactivating SARS-CoV-2, we found that DUV-LED inactivation of aerosolized SARS-CoV-2 was approximately nine times greater than that of SARS-CoV-2 suspension. Our data demonstrate that this newly developed, compact, high-power 265-nm DUV-LED irradiation system with remarkably high inactivation efficiency for aerosolized SARS-CoV-2 could be an effective and practical tool for controlling SARS-CoV-2 spread. IMPORTANCE We developed a 265-nm high-power DUV-LED irradiation system and quantitatively demonstrated that the DUV-LED can inactivate SARS-CoV-2 in suspensions and aerosols within very short irradiation times. We also found that the inactivation effect was about nine times greater against aerosolized SARS-CoV-2 than against SARS-CoV-2 suspensions. The DUV-LED has several advantages over conventional LEDs and mercury lamps, including high power, compactness, and environmental friendliness; its rapid inactivation of aerosolized SARS-CoV-2 opens up new possibilities for the practical application of DUV-LEDs in high-efficiency air purification systems to control airborne transmission of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Suspensions , Ultraviolet Rays
14.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1276013

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
15.
J Infect Chemother ; 27(7): 1058-1062, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1188757

ABSTRACT

INTRODUCTION: Rapid antigen detection (RAD) tests are convenient tools for detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinics, and testing using saliva samples could decrease the risk of infection during sample collection. This study aimed to assess the accuracy of the SARS-CoV-2 RAD for testing of nasopharyngeal swab specimens and saliva samples in comparison with the RT-PCR tests and viral culture for detecting viable virus. METHODS: One hundred seventeen nasopharyngeal swab specimens and 73 saliva samples with positive results on RT-PCR were used. Residual samples were assayed using a commercially available RAD test immediately, and its positivity was determined at various time points during the clinical course. The concordance between 54 nasopharyngeal swab samples and saliva samples that were collected simultaneously was determined. Viral culture was performed on 117 samples and compared with the results of the RAD test. RESULTS: The positive rate of RAD test using saliva samples was low throughout the clinical course. Poor concordance was observed between nasopharyngeal swab specimens and saliva samples (75.9%, kappa coefficient 0.310). However, a substantially high concordance between the RAD test and viral culture was observed in both nasopharyngeal swab specimens (86.8%, kappa coefficient 0.680) and saliva samples (95.1%, kappa coefficient 0.643). CONCLUSIONS: The sensitivity of the SARS-CoV-2 RAD test was insufficient, particularly for saliva samples. However, a substantially high concordance with viral culture suggests its potential utility as an auxiliary test for estimating SARS-CoV-2 viability.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nasopharynx , Reverse Transcriptase Polymerase Chain Reaction , Saliva
16.
Viruses ; 12(12)2020 12 10.
Article in English | MEDLINE | ID: covidwho-970091

ABSTRACT

Reverse transcription-quantitative PCR (RT-qPCR)-based tests are widely used to diagnose coronavirus disease 2019 (COVID-19). As a result that these tests cannot be done in local clinics where RT-qPCR testing capability is lacking, rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are used for rapid diagnosis. However, their sensitivity compared with each other and with RT-qPCR and infectious virus isolation has not been examined. Here, we compared the sensitivity among four RATs by using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates and several types of COVID-19 patient specimens and compared their sensitivity with that of RT-qPCR and infectious virus isolation. Although the RATs read the samples containing large amounts of virus as positive, even the most sensitive RAT read the samples containing small amounts of virus as negative. Moreover, all RATs tested failed to detect viral antigens in several specimens from which the virus was isolated. The current RATs will likely miss some COVID-19 patients who are shedding infectious SARS-CoV-2.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Systems , SARS-CoV-2/isolation & purification , False Negative Reactions , Humans , Immunoassay , Real-Time Polymerase Chain Reaction , SARS-CoV-2/immunology , Sensitivity and Specificity , Specimen Handling
17.
mSphere ; 5(5)2020 10 21.
Article in English | MEDLINE | ID: covidwho-889855

ABSTRACT

Guidelines from the CDC and the WHO recommend the wearing of face masks to prevent the spread of coronavirus (CoV) disease 2019 (COVID-19); however, the protective efficiency of such masks against airborne transmission of infectious severe acute respiratory syndrome CoV-2 (SARS-CoV-2) droplets/aerosols is unknown. Here, we developed an airborne transmission simulator of infectious SARS-CoV-2-containing droplets/aerosols produced by human respiration and coughs and assessed the transmissibility of the infectious droplets/aerosols and the ability of various types of face masks to block the transmission. We found that cotton masks, surgical masks, and N95 masks all have a protective effect with respect to the transmission of infective droplets/aerosols of SARS-CoV-2 and that the protective efficiency was higher when masks were worn by a virus spreader. Importantly, medical masks (surgical masks and even N95 masks) were not able to completely block the transmission of virus droplets/aerosols even when completely sealed. Our data will help medical workers understand the proper use and performance of masks and determine whether they need additional equipment to protect themselves from infected patients.IMPORTANCE Airborne simulation experiments showed that cotton masks, surgical masks, and N95 masks provide some protection from the transmission of infective SARS-CoV-2 droplets/aerosols; however, medical masks (surgical masks and even N95 masks) could not completely block the transmission of virus droplets/aerosols even when sealed.


Subject(s)
Aerosols , Air Microbiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Masks/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Health Personnel/education , Humans , Masks/classification , SARS-CoV-2
18.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-611003

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL