Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Respir Res ; 23(1): 210, 2022 Aug 21.
Article in English | MEDLINE | ID: covidwho-2002181


BACKGROUND: Diaphragmatic dysfunction is a major factor responsible for weaning failure in patients that underwent prolonged invasive mechanical ventilation for acute severe respiratory failure from COVID-19. This study hypothesizes that ultrasound measured diaphragmatic thickening fraction (DTF) could provide corroborating information for weaning COVID-19 patients from mechanical ventilation. METHODS: This was an observational, pragmatic, cross-section, multicenter study in 6 Italian intensive care units. DTF was assessed in COVID-19 patients undergoing weaning from mechanical ventilation from 1st March 2020 to 30th June 2021. Primary aim was to evaluate whether DTF is a predictive factor for weaning failure. RESULTS: Fifty-seven patients were enrolled, 25 patients failed spontaneous breathing trial (44%). Median length of invasive ventilation was 14 days (IQR 7-22). Median DTF within 24 h since the start of weaning was 28% (IQR 22-39%), RASS score (- 2 vs - 2; p = 0.031); Kelly-Matthay score (2 vs 1; p = 0.002); inspiratory oxygen fraction (0.45 vs 0.40; p = 0.033). PaO2/FiO2 ratio was lower (176 vs 241; p = 0.032) and length of intensive care stay was longer (27 vs 16.5 days; p = 0.025) in patients who failed weaning. The generalized linear regression model did not select any variables that could predict weaning failure. DTF was correlated with pH (RR 1.56 × 1027; p = 0.002); Kelly-Matthay score (RR 353; p < 0.001); RASS (RR 2.11; p = 0.003); PaO2/FiO2 ratio (RR 1.03; p = 0.05); SAPS2 (RR 0.71; p = 0.005); hospital and ICU length of stay (RR 1.22 and 0.79, respectively; p < 0.001 and p = 0.004). CONCLUSIONS: DTF in COVID-19 patients was not predictive of weaning failure from mechanical ventilation, and larger studies are needed to evaluate it in clinical practice further. Registered: (NCT05019313, 24 August 2021).

COVID-19 , Respiration, Artificial , Diaphragm/diagnostic imaging , Humans , Intensive Care Units , Ventilator Weaning
Ann Intensive Care ; 11(1): 63, 2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1202278


BACKGROUND: Prone positioning (PP) has been used to improve oxygenation in patients affected by the SARS-CoV-2 disease (COVID-19). Several mechanisms, including lung recruitment and better lung ventilation/perfusion matching, make a relevant rational for using PP. However, not all patients maintain the oxygenation improvement after returning to supine position. Nevertheless, no evidence exists that a sustained oxygenation response after PP is associated to outcome in mechanically ventilated COVID-19 patients. We analyzed data from 191 patients affected by COVID-19-related acute respiratory distress syndrome undergoing PP for clinical reasons. Clinical history, severity scores and respiratory mechanics were analyzed. Patients were classified as responders (≥ median PaO2/FiO2 variation) or non-responders (< median PaO2/FiO2 variation) based on the PaO2/FiO2 percentage change between pre-proning and 1 to 3 h after re-supination in the first prone positioning session. Differences among the groups in physiological variables, complication rates and outcome were evaluated. A competing risk regression analysis was conducted to evaluate if PaO2/FiO2 response after the first pronation cycle was associated to liberation from mechanical ventilation. RESULTS: The median PaO2/FiO2 variation after the first PP cycle was 49 [19-100%] and no differences were found in demographics, comorbidities, ventilatory treatment and PaO2/FiO2 before PP between responders (96/191) and non-responders (95/191). Despite no differences in ICU length of stay, non-responders had a higher rate of tracheostomy (70.5% vs 47.9, P = 0.008) and mortality (53.7% vs 33.3%, P = 0.006), as compared to responders. Moreover, oxygenation response after the first PP was independently associated to liberation from mechanical ventilation at 28 days and was increasingly higher being higher the oxygenation response to PP. CONCLUSIONS: Sustained oxygenation improvement after first PP session is independently associated to improved survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.

Sci Rep ; 10(1): 21775, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-975029


There is the urgent need to study the effects of immunomodulating agents as therapy for Covid-19. An observational, cohort, prospective study with 30 days of observation was carried out to assess clinical outcomes in 88 patients hospitalized for Covid-19 pneumonia and treated with canakinumab (300 mg sc). Median time from diagnosis of Covid-19 by viral swab to administration of canakinumab was 7.5 days (range 0-30, IQR 4-11). Median PaO2/FiO2 increased from 160 (range 53-409, IQR 122-210) at baseline to 237 (range 72-533, IQR 158-331) at day 7 after treatment with canakinumab (p < 0.0001). Improvement of oxygen support category was observed in 61.4% of cases. Median duration of hospitalization following administration of canakinumab was 6 days (range 0-30, IQR 4-11). At 7 days, 58% of patients had been discharged and 12 (13.6%) had died. Significant differences between baseline and 7 days were observed for absolute lymphocyte counts (mean 0.60 vs 1.11 × 109/L, respectively, p < 0.0001) and C-reactive protein (mean 31.5 vs 5.8 mg/L, respectively, p < 0.0001).Overall survival at 1 month was 79.5% (95% CI 68.7-90.3). Oxygen-support requirements improved and overall mortality was 13.6%. Confirmation of the efficacy of canakinumab for Covid-19 warrants further study in randomized controlled trials.

Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 Drug Treatment , COVID-19 , Hospitalization , Interleukin-1beta/antagonists & inhibitors , SARS-CoV-2 , Aged , COVID-19/mortality , Disease-Free Survival , Female , Humans , Male , Middle Aged , Oxygen/administration & dosage , Prospective Studies , Survival Rate