Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Pathogens ; 11(8):869, 2022.
Article in English | ProQuest Central | ID: covidwho-2023965

ABSTRACT

As of 15 June, there have been, globally, a total of 2103 laboratory-confirmed cases and one probable case of Monkeypox, including one death. We report two cases of vesicular infectious diseases, one of those is the first case of Monkeypox in the Campania Region. The report, therefore, highlights a recrudescent infection disease that could represent a challenge in differential diagnosis with other vesicular infectious diseases such as Varicella Zoster Virus, during a pandemic season that does not seem to end. Indeed, varicella should be carefullu considered in differential diagnosis according to its vesicular or pustular rash to have a prompt diagnosis and public health response in case of monkeypox infection.

2.
Heliyon ; 8(8):e10246-e10246, 2022.
Article in English | EuropePMC | ID: covidwho-1999283

ABSTRACT

Background and aims The pathophysiology of SARS-CoV-2-associated diarrhea is unknown. Using an experimental model validated for rotavirus-induced diarrhea, we investigated the effects of SARS-CoV-2 on transepithelial ion fluxes and epithelial integrity of human intestinal cells. The effect of the antidiarrheal agent diosmectite on secretion was also evaluated following its inclusion in COVID-19 management protocols. Methods We evaluated electrical parameters (intensity of short-circuit current [Isc] and transepithelial electrical resistance [TEER]) in polarized Caco-2 cells and in colonic specimens mounted in Ussing chambers after exposure to heat-inactivated (hi) SARS-CoV-2 and spike protein. Spectrofluorometry was used to measure reactive oxygen species (ROS), a marker of oxidative stress. Experiments were repeated after pretreatment with diosmectite, an antidiarrheal drug used in COVID-19 patients. Results hiSARS-CoV-2 induced an increase in Isc when added to the mucosal (but not serosal) side of Caco-2 cells. The effect was inhibited in the absence of chloride and calcium and by the mucosal addition of the Ca2+-activated Cl– channel inhibitor A01, suggesting calcium-dependent chloride secretion. Spike protein had a lower, but similar, effect on Isc. The findings were consistent when repeated in human colonic mucosa specimens. Neither hiSARS-CoV-2 nor spike protein affected TEER, indicating epithelial integrity;both increased ROS production. Pretreatment with diosmectite inhibited the secretory effect and significantly reduced ROS of both hiSARS-CoV-2 and spike protein. Conclusions SARS-CoV-2 induces calcium-dependent chloride secretion and oxidative stress without damaging intestinal epithelial structure. The effects are largely induced by the spike protein and are significantly reduced by diosmectite. SARS-CoV-2 should be added to the list of human enteric pathogens. COVID-19;Gastroenteritis;Oxidative stress;Diosmectite

3.
Genome Med ; 14(1): 90, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1993379

ABSTRACT

BACKGROUND: Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the only approach to rapidly monitor and tackle emerging variants of concern (VOC) of the COVID-19 pandemic. Such scrutiny is crucial to limit the spread of VOC that might escape the immune protection conferred by vaccination strategies or previous virus exposure. It is also becoming clear now that efficient genomic surveillance would require monitoring of the host gene expression to identify prognostic biomarkers of treatment efficacy and disease progression. Here we propose an integrative workflow to both generate thousands of SARS-CoV-2 genome sequences per week and analyze host gene expression upon infection. METHODS: In this study we applied an integrated workflow for RNA extracted from nasal swabs to obtain in parallel the full genome of SARS-CoV-2 and transcriptome of host respiratory epithelium. The RNA extracted from each sample was reverse transcribed and the viral genome was specifically enriched through an amplicon-based approach. The very same RNA was then used for patient transcriptome analysis. Samples were collected in the Campania region, Italy, for viral genome sequencing. Patient transcriptome analysis was performed on about 700 samples divided into two cohorts of patients, depending on the viral variant detected (B.1 or delta). RESULTS: We sequenced over 20,000 viral genomes since the beginning of the pandemic, producing the highest number of sequences in Italy. We thus reconstructed the pandemic dynamics in the regional territory from March 2020 to December 2021. In addition, we have matured and applied novel proof-of-principle approaches to prioritize possible gain-of-function mutations by leveraging patients' metadata and isolated patient-specific signatures of SARS-CoV-2 infection. This allowed us to (i) identify three new viral variants that specifically originated in the Campania region, (ii) map SARS-CoV-2 intrahost variability during long-term infections and in one case identify an increase in the number of mutations in the viral genome, and (iii) identify host gene expression signatures correlated with viral load in upper respiratory ways. CONCLUSION: In conclusion, we have successfully generated an optimized and cost-effective strategy to monitor SARS-CoV-2 genetic variability, without the need of automation. Thus, our approach is suitable for any lab with a benchtop sequencer and a limited budget, allowing an integrated genomic surveillance on premises. Finally, we have also identified a gene expression signature defining SARS-CoV-2 infection in real-world patients' upper respiratory ways.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Genome, Viral , Humans , Pandemics , RNA , SARS-CoV-2/genetics
4.
Pathogens ; 11(7)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1964048

ABSTRACT

One serious concern associated with the SARS-CoV-2 pandemic is that the virus might spill back from humans to wildlife, which would render some animal species reservoirs of the human virus. We assessed the potential circulation of SARS-CoV-2 caused by reverse infection from humans to bats, by performing bat surveillance from different sites in Central-Southern Italy. We restricted our survey to sampling techniques that are minimally invasive and can therefore be broadly applied by non-medical operators such as bat workers. We collected 240 droppings or saliva from 129 bats and tested them using specific and general primers for SARS-CoV-2 and coronaviruses, respectively. All samples (127 nasal swabs and 113 faecal droppings) were negative for SARS-CoV-2, and these results were confirmed by testing the samples with the Droplet Digital PCR. Additionally, pancoronavirus end-point RT-PCR was performed, and no sample showed specific bands. This outcome is a first step towards a better understanding of the reverse transmission of this virus to bats. Although the occurrence of a reverse zoonotic pattern can only be fully established by serological testing, the latter might represent an in-depth follow-up to a broad-scale preliminary assessment performed with our approach. We encourage the systematic surveillance of bats to help prevent reverse zoonotic episodes that would jeopardize human health, as well as biodiversity conservation and management.

5.
Animals (Basel) ; 12(11)2022 Jun 04.
Article in English | MEDLINE | ID: covidwho-1883971

ABSTRACT

Following the COVID-19 epidemic outbreak in Ariano Irpino, Campania region (Italy), we tested lactating cows for the presence of SARS-CoV-2 on a cattle farm at which, prior to the investigation, 13 of the 20 farmworkers showed COVID-19-like symptoms, and one of them died. Twenty-four lactating cows were sampled to detect SARS-CoV-2. All nasal and rectal swabs and milk samples were negative for SARS-CoV-2 RNA. Of the 24 collected serum samples, 11 showed antibodies against SARS-CoV-2 nucleocapsid protein, 14 showed antibodies against SARS-CoV-2 spike protein, and 13 developed neutralising antibodies for SARS-COV-2; all samples were negative for Bovine Coronavirus (BCoV), another betacoronavirus. To our knowledge, this is the first report of natural serological evidence of SARS-CoV-2 infection in lactating cows. We hypothesise that this may be a case of reverse zoonosis. However, the role of cattle in SARS-CoV-2 infection and transmission seems to be negligible.

6.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1855647

ABSTRACT

The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/drug therapy , Epitopes , Humans , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry
7.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332235

ABSTRACT

Following the coronavirus disease 2019 (COVID-19) epidemic peak in Ariano Irpino, Campania region (Italy), we tested cattle for the presence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) on a cattle farm at which, prior to the investigation, 13 of the 20 farmworkers showed COVID-19-like symptoms, and one of them died. Twenty-four cows were sampled to detect SARS-CoV-2. All nasal and rectal swabs and milk samples were negative for SARS-CoV-2 RNA. Of the 24 collected serum samples, 11 were positive for SARS-CoV-2 nucleocapsid protein, 14 were positive for SARS-CoV-2 spike protein, and 13 were positive for SARS-COV-2-neutralising antibodies;all samples were negative for Bovine Coronavirus (BCoV), another betacoronavirus. To our knowledge, this is the first report of natural serological evidence of SARS-CoV-2 infection in cattle. We hypothesise that this may be a case of reverse zoonosis. However, the role of cattle in SARS-CoV-2 infection and transmission seems to be negligible.

8.
Viruses ; 14(3)2022 03 21.
Article in English | MEDLINE | ID: covidwho-1753692

ABSTRACT

There is a growing interest in using monoclonal antibodies (mAbs) in the early stages of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection to prevent disease progression. Little is known about the efficacy of mAbs against the delta variant of concern and its clinical presentations. We evaluated the effect of casirivimab/imdevimab treatment among five delta vaccine breakthrough patients. Symptomatic non-hospitalized vaccinated patients were submitted to nasopharyngeal swabs for the detection of SARS-CoV-2 and Next-Generation Sequencing (NGS). Blood analysis and chest Computed Tomography were also performed. A cocktail of casirivimab/imdevimab was administrated, and patients were monitored weekly. Clinical evolution was evaluated by the regression of the symptoms, negative results by real-time RT-PCR, and by the need of hospitalization: these aspects were considered as significant outcomes. In four cases, symptom reversion and viral load reduction were observed within 2 days and 7 days after mAbs treatment, respectively. Only one case, suffering from thymoma, was hospitalized 2 days later because of respiratory failure, which reverted within 18 days. mAbs treatment seems to be safe and effective against the delta variant and its clinical manifestations.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , COVID-19/drug therapy , Humans , SARS-CoV-2/genetics
9.
Int J Mol Sci ; 23(4)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1690219

ABSTRACT

The development of prophylactic agents against the SARS-CoV-2 virus is a public health priority in the search for new surrogate markers of active virus replication. Early detection markers are needed to follow disease progression and foresee patient negativization. Subgenomic RNA transcripts (with a focus on sgN) were evaluated in oro/nasopharyngeal swabs from COVID-19-affected patients with an analysis of 315 positive samples using qPCR technology. Cut-off Cq values for sgN (Cq < 33.15) and sgE (Cq < 34.06) showed correlations to high viral loads. The specific loss of sgN in home-isolated and hospitalized COVID-19-positive patients indicated negativization of patient condition, 3-7 days from the first swab, respectively. A new detection kit for sgN, gene E, gene ORF1ab, and gene RNAse P was developed recently. In addition, in vitro studies have shown that 2'-O-methyl antisense RNA (related to the sgN sequence) can impair SARS-CoV-2 N protein synthesis, viral replication, and syncytia formation in human cells (i.e., HEK-293T cells overexpressing ACE2) upon infection with VOC Alpha (B.1.1.7)-SARS-CoV-2 variant, defining the use that this procedure might have for future therapeutic actions against SARS-CoV-2.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/physiology , Virus Replication/physiology , Coronavirus Nucleocapsid Proteins/analysis , Giant Cells/drug effects , Giant Cells/virology , HEK293 Cells , Humans , Limit of Detection , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/genetics , RNA, Antisense/pharmacology , RNA, Viral , Ribonuclease P/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Sensitivity and Specificity , Social Isolation , Viral Load , Viroporin Proteins/genetics , Virus Replication/drug effects
10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307756

ABSTRACT

Background: In December 2019 an outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 was first observed in Wuhan, China. The virus has spread rapidly throughout the world creating a pandemic scenario. Several risk factors have been identified, such as age, gender, concomitant diseases as well as viral load. One of the key questions since the beginning of the pandemic, is the role of asymptomatic people in spreading SARS-CoV-2. An observational study in Southern Italy was conducted in order to elucidate the possible role of asymptomatic individuals related to their viral loads in the transmission of the virus within two nursing facilities. Methods: : oro-nasopharyngeal swabs from 179 nursing health care workers and patients were collected. SARS-CoV-2 RT-qPCR was performed and viral loads were calculated by using standard curve. For positive results, a statistical correlation between viral loads , the presence/absence of symptoms , age and gender variables was investigated. Results: : SARS-CoV-2 was confirmed in the 50.8% (n=91) of the cases. Median age of positive individuals resulted higher than negative ones. A statistically significant difference (p <.001) was observed for age and gender variables and over 65 years individuals showed higher susceptibility to SARS-CoV-2 infection than younger ones (OR=3.93) as well as female (OR=2.86). Among 91 tested positive, the 70.3% was symptomatic (n=64) whilst the 29.7% was asymptomatic (n=27). Median viral loads of asymptomatic individuals were found statistically significant higher than symptomatic ones (p=.001), while no influence was observed in age and gender variables. Conclusions: : A range from 9.2% to 69% of confirmed SARS-CoV-2 cases remains asymptomatic, moreover, sporadic transmissions from asymptomatic people are reported, that makes their involvement an important issue to take into account in the spreading control of the virus. An asymptomatic clinical course was observed in the 29.7% of positive individuals, moreover, median viral loads resulted to be statistically significant when compared to symptomatic ones. Surely, such a relevant frequency should not be ignored in relation to the spread of the disease in an environment which has not only important intrinsic (age, gender, concomitant diseases) but also extrinsic factors such as high population density and close contacts.

11.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1674736

ABSTRACT

Butyrate is a major gut microbiome metabolite that regulates several defense mechanisms against infectious diseases. Alterations in the gut microbiome, leading to reduced butyrate production, have been reported in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A new butyrate releaser, useful for all the known applications of butyrate, presenting physiochemical characteristics suitable for easy oral administration, (N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), has been recently developed. We investigated the protective action of FBA against SARS-CoV-2 infection in the human small intestine and enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), neuropilin-1 (NRP1), pro-inflammatory cytokines expression, genes involved in the antiviral response and the activation of Nf-kB nuclear factor (erythroid-derived 2-like) 2 (Nfr2) pathways. We found that FBA positively modulates the crucial aspects of the infection in small intestinal biopsies and human enterocytes, reducing the expression of ACE2, TMPRSS2 and NRP1, pro-inflammatory cytokines interleukin (IL)-15, monocyte chemoattractant protein-1 (MCP-1) and TNF-α, and regulating several genes involved in antiviral pathways. FBA was also able to reduce the number of SARS-CoV-2-infected cells, and ACE2, TMPRSS2 and NRP1 expression. Lastly, through the inhibition of Nf-kB and the up-regulation of Nfr2, it was also able to reduce the expression of pro-inflammatory cytokines IL-15, MCP-1 and TNF-α in human enterocytes. The new butyrate releaser, FBA, exerts a preventive action against SARS-CoV-2 infection. It could be considered as an innovative strategy to limit COVID-19.


Subject(s)
Butyrates/pharmacology , COVID-19/drug therapy , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Butyrates/metabolism , COVID-19/metabolism , Caco-2 Cells , Enterocytes/drug effects , Enterocytes/metabolism , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Intestines/drug effects , Intestines/metabolism , Male , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
12.
Microorganisms ; 10(2)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1650703

ABSTRACT

The first reports of SARS-CoV-2 among domestic and wild animals, together with the rapid emergence of new variants, have created serious concerns regarding a possible spillback from animal hosts, which could accelerate the evolution of new viral strains. The present study aimed to investigate the prevalence and the transmission of SARS-CoV-2 among both owned and stray pets. A total of 182 dogs and 313 cats were tested for SARS-CoV-2. Specimens collected among owned and stray pets were subjected to RT-PCR and serological examinations. No viral RNA was detected, while anti-N antibodies were observed in six animals (1.3%), one dog (0.8%) and five cats (1.7%). Animals' background revealed that owned cats, living with owners with COVID-19, showed significantly different prevalence compared to stray ones (p = 0.0067), while no difference was found among dogs. Among the seropositive pets, three owned cats also showed moderate neutralizing antibody titers. Pets and other species are susceptible to SARS-CoV-2 infection because of the spike affinity towards their ACE2 cellular receptor. Nevertheless, the risk of retransmission remains unclear since pet-to-human transmission has never been described. Due to the virus' high mutation rate, new reservoirs cannot be excluded; thus, it is reasonable to test pets, mostly if living in households affected by COVID-19.

13.
J Funct Foods ; 87: 104787, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1607061

ABSTRACT

Fermented foods have been proposed in limiting SARS-CoV-2 infection. Emerging evidence suggest the efficacy of cow's milk fermented with the probiotic L. paracasei CBAL74 (FM-CBAL74) in preventing infectious diseases. We evaluated the protective action of FM-CBAL74 against SARS-CoV-2 infection in human enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and pro-inflammatory cytokines expression (IL-6, IL-15, IL-1ß, VEGFß, TNF-α, MCP-1, CXCL1). Pre-incubation with FM-CBA L74 reduced the number of infected cells. The expression of ACE2 and the pro-inflammatory cytokines IL-6, VEGFß, IL-15, IL-1ß was downregulated by the pre-treatment with this fermented food. No effect on TMPRSS2, MCP-1, TNF-α and CXCL1 expression was observed. Modulating the crucial aspects of the infection, the fermented food FM-CBAL74 exerts a preventive action against SARS-CoV-2. These evidence could pave the way to innovative nutritional strategy to mitigate the COVID-19.

14.
Future Sci OA ; 7(7): FSO711, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1302056

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, has rarely been associated with transmission from humans to animals (reverse zoonotic transmission). In this retrospective study, the authors reviewed data obtained from 236 animals, including buffaloes, goats/sheep, horses, carrier pigeons, rabbits, hens, snakes, pigs and cows that were screened for SARS-CoV-2 infection because they had been in contact with their SARS-CoV-2-positive breeder for at least 2 weeks. None of the tested animals were found to be positive. The authors' findings suggest that the risk of reverse zoonotic transmission among bred animals and SARS-CoV-2-positive breeders is very low or nonexistent. Additional studies are warranted.

15.
Sci Signal ; 14(690)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299215

ABSTRACT

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Polyphosphates/pharmacology , SARS-CoV-2/drug effects , Administration, Inhalation , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/metabolism , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , In Vitro Techniques , Models, Biological , Molecular Docking Simulation , Nebulizers and Vaporizers , Polyphosphates/administration & dosage , Polyphosphates/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Domains and Motifs , Proteolysis/drug effects , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Vero Cells , Virus Replication/drug effects
16.
Infect Agent Cancer ; 16(1): 45, 2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1277954

ABSTRACT

BACKGROUND: In December 2019 an outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 was first observed in Wuhan, China. The virus has spread rapidly throughout the world creating a pandemic scenario. Several risk factors have been identified, such as age, sex, concomitant diseases as well as viral load. A key point is the role of asymptomatic people in spreading SARS-CoV-2. An observational study in Southern Italy was conducted in order to elucidate the possible role of asymptomatic individuals related to their viral loads in the transmission of the virus within two nursing facilities. METHODS: Oro-nasopharyngeal swabs from 179 nursing health care workers and patients were collected. SARS-CoV-2 RT-qPCR was performed and viral loads were calculated by using standard curve. A statistical correlation between viral loads, the presence/absence of symptoms, age and sex variables was investigated. RESULTS: SARS-CoV-2 was confirmed in the 50.8 % (n = 91) of the cases. Median age of positive individuals resulted higher than negative ones. Over 65 year as well as female individuals showed higher susceptibility to SARS-CoV-2 infection, OR = 3.93 and 2.86, respectively. Among 91 tested positive, the 70.3 % was symptomatic while the 29.7 % was asymptomatic. Median viral loads of asymptomatic individuals were found statistically significant higher than symptomatic ones (p = 0.001), while no influence was observed in age and sex variables. The presence of comorbidities was 8.9 folds higher in patients who showed and developed symptoms compared to non-symptomatic ones. Moreover, higher viral loads were found in patients who remained asymptomatic than pre-symptomatic (p = 0.022). CONCLUSIONS: A range from 9.2 to 69 % of confirmed SARS-CoV-2 cases remains asymptomatic, moreover, sporadic transmissions from asymptomatic people are reported, that makes their involvement an important issue to take into account in the spreading control of the virus. An asymptomatic clinical course was observed in the 29.7 % of positive individuals, moreover, median viral loads resulted to be statistically significant when compared to symptomatic ones. Surely, such a relevant frequency should not be ignored in relation to the spread of the disease in an environment which has not only important intrinsic (age, sex, concomitant diseases) but also extrinsic factors such as high population density and close contacts.

17.
Sci Rep ; 11(1): 11046, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1246388

ABSTRACT

Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein represent good candidates to interfere in the Spike/ACE2 interaction, preventing virus cell entry. Since anti-spike mAbs, used individually, might be unable to block the virus entry in the case of resistant mutations, we designed an innovative strategy for the isolation of multiple novel human scFvs specific for the binding domain (RBD) of Spike. By panning a large phage display antibody library on immobilized RBD, we obtained specific binders by eluting with ACE2 in order to identify those scFvs recognizing the epitope of Spike interacting with its receptor. We converted the novel scFvs into full size IgG4, differently from the previously isolated IgG1 mAbs, to avoid unwanted potential side effects of IgG1 potent effector functions on immune system. The novel antibodies specifically bind to RBD in a nanomolar range and interfere in the interaction of Spike with ACE2 receptor, either used as purified protein or when expressed on cells in its native conformation. Furthermore, some of them have neutralizing activity for virus infection in cell cultures by using two different SARS-CoV-2 isolates including the highly contagious VOC 202012/01 variant and could become useful therapeutic tools to fight against the SARS-CoV-2 virus.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/therapy , Immunoglobulin G/metabolism , Immunotherapy/methods , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , Cells, Cultured , Epitopes , Humans , Immunoglobulin G/immunology , Pandemics , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
18.
Transbound Emerg Dis ; 2020 Mar 12.
Article in English | MEDLINE | ID: covidwho-796708

ABSTRACT

Canine coronavirus (CCoV) strains with the ability to spread to internal organs, also known as pantropic CCoVs (pCCoVs), have been detected in domestic dogs and wild carnivores. Our study focused on the detection and molecular characterization of pCCoV strains circulating in Italy during the period 2014-2017 in autochthonous dogs, in dogs imported from eastern Europe or illegally imported from an unknown country. Samples from the gut and internal organs of 352 dogs were screened for CCoV; putative pCCoV strains, belonging to subtype CCoV-IIa, were identified in the internal organs of 35 of the examined dogs. Fifteen pCCoV strains were subjected to sequence and phylogenetic analyses, showing that three strains (98960-1/2016, 98960-3/2016, 98960-4/2016) did not cluster either with Italian or European CCoVs, being more closely related to alphacoronaviruses circulating in Asia with which they displayed a 94%-96% nucleotide identity in partial spike protein gene sequences. The pCCoV-positive samples were also tested for other canine viruses, showing co-infections mainly with canine parvovirus.

19.
Vet Med Int ; 2020: 6207297, 2020.
Article in English | MEDLINE | ID: covidwho-611219

ABSTRACT

Infectious diseases are a common cause of death in young dogs. Several factors are thought to predispose young dogs to microbiological infections. Identifying the cause of death is often a challenge, and broad diagnostic analysis is often needed. Here, we aimed to determine the infectious causes of death in young dogs aged up to 1 year, examining how it relates to age (under and over 6 months), lifestyle (owned versus ownerless), breed (purebred and crossbreed), and gender. A retrospective study was conducted in a 3-year period (2015-2017) on 138 dead dogs that had undergone necropsy and microbiological diagnostics. Enteritis and pneumonia were the most commonly observed lesions. Polymicrobism was more prevalent (62.3%) than single-agent infections and associated with a higher rate of generalised lesions. Ownerless dogs showed over a three-fold higher predisposition to viral coinfections than owned dogs. Above all, canine parvovirus was the most prevalent agent (77.5%), followed by canine coronavirus (31.1%) and canine adenovirus (23.9%); ownerless pups had a higher predisposition to these viruses. Escherichia coli (23.9%), Clostridium perfringens type A (18.1%), and Enterococcus spp. (8.7%) were the most commonly identified bacteria, which mostly involved in coinfections. A lower prevalence of CDV and Clostridium perfringens type A was observed in puppies under 6 months of age. In conclusion, this study is the first comprehensive survey on a wide panel of microbiological agents related to necropsy lesions. It lays the groundwork for future studies attempting to understand the circulation of infectious agents in a determined area.

SELECTION OF CITATIONS
SEARCH DETAIL