Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Behav Sci (Basel) ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938699


Purpose: To identify clinical phenotypes and biomarkers for best mortality prediction considering age, symptoms and comorbidities in COVID-19 patients with chronic neurological diseases in intensive care units (ICUs). Subjects and Methods: Data included 1252 COVID-19 patients admitted to ICUs in Cuba between January and August 2021. A k-means algorithm based on unsupervised learning was used to identify clinical patterns related to symptoms, comorbidities and age. The Stable Sparse Classifiers procedure (SSC) was employed for predicting mortality. The classification performance was assessed using the area under the receiver operating curve (AUC). Results: Six phenotypes using a modified v-fold cross validation for the k-means algorithm were identified: phenotype class 1, mean age 72.3 years (ys)-hypertension and coronary artery disease, alongside typical COVID-19 symptoms; class 2, mean age 63 ys-asthma, cough and fever; class 3, mean age 74.5 ys-hypertension, diabetes and cough; class 4, mean age 67.8 ys-hypertension and no symptoms; class 5, mean age 53 ys-cough and no comorbidities; class 6, mean age 60 ys-without symptoms or comorbidities. The chronic neurological disease (CND) percentage was distributed in the six phenotypes, predominantly in phenotypes of classes 3 (24.72%) and 4 (35,39%); χ² (5) 11.0129 p = 0.051134. The cerebrovascular disease was concentrated in classes 3 and 4; χ² (5) = 36.63, p = 0.000001. The mortality rate totaled 325 (25.79%), of which 56 (17.23%) had chronic neurological diseases. The highest in-hospital mortality rates were found in phenotypes 1 (37.22%) and 3 (33.98%). The SSC revealed that a neurological symptom (ageusia), together with two neurological diseases (cerebrovascular disease and Parkinson's disease), and in addition to ICU days, age and specific symptoms (fever, cough, dyspnea and chilliness) as well as particular comorbidities (hypertension, diabetes and asthma) indicated the best prediction performance (AUC = 0.67). Conclusions: The identification of clinical phenotypes and mortality biomarkers using practical variables and robust statistical methodologies make several noteworthy contributions to basic and experimental investigations for distinguishing the COVID-19 clinical spectrum and predicting mortality.

Neuroimage ; 256: 119190, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1829283


This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.

Brain Diseases , COVID-19 , Brain/diagnostic imaging , Brain Mapping , Electroencephalography/methods , Humans