Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1733147

ABSTRACT

Background SARS-CoV-2 breakthrough infections after complete vaccination are increasing whereas their determinants remain uncharacterized. Methods We analyzed two cases of post-vaccination SARS-CoV-2 infections by α and β variants, respectively. For each participant both humoral (binding and neutralizing antibodies) and cellular (activation markers and cytokine expression) immune responses were characterized longitudinally. Results The first participant (P1) was infected by an α variant and displayed an extended and short period of viral excretion and symptom. Analysis of cellular and humoral response 72 h post-symptom onset revealed that P1 failed at developing neutralizing antibodies and a potent CD4 memory response (lack of SARS-CoV-2 specific CD4+IL-2+ cells) and CD8 effector response (CD8+IFNγ+ cells). The second participant (P2) developed post-vaccination SARS-CoV-2 infection by a β variant, associated with a short period of viral excretion and symptoms. Despite displaying initially high levels and polyfunctional T cell responses, P2 lacked initial β-directed neutralizing antibodies. Both participants developed and/or increased their neutralization activity and cellular responses against all variants, namely, β and δ variants that lasts up to 3 months after breakthrough infection. Conclusions An analysis of cellular and humoral response suggests two possible mechanisms of breakthrough infection: a poor immune response to vaccine and viral evasion to neutralizing antibodies.

2.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294752

ABSTRACT

Assessment of the kinetics of SARS-CoV-2 antibodies is essential in predicting protection against reinfection and durability of vaccine protection. Here, we longitudinally measured Spike (S) and Nucleocapsid (N)-specific antibodies in 1,309 healthcare workers (HCWs), including 916 COVID-19 negative HCWs and 393 convalescent COVID-19 for up to 422 days post-symptom. From month (M)1 to M7-9 post-infection, SARS-CoV-2 antibodies decreased moderately in convalescent HCWs in a biphasic model, with men showing a slower decay of anti-N (p=0.02), and a faster decay of anti-S (p=0.0008) than women. At M11-13, anti-N dramatically decreased (half-life: 283 days) while anti-S stabilized (half-life: 725 days) at a median of 2.39 log Arbitrary Units (AU)/mL (Interquartile Range (IQR): 2.10 -2.75). Overall, 69 SARS-CoV-2 infections developed in the COVID-19 negative group (incidence of 12.22 per 100 person-years) versus one in the COVID-19 positive group (incidence of 0.40 per 100 person-years), indicating a relative reduction in the incidence of SARS-CoV-2 reinfection of 96.7% (p<0.0001). Correlation with live-virus neutralization assay revealed that variants D614G and B.1.1.7, but not B.1.351, were sensitive to anti-S antibodies at 2.3 log AU/mL, while IgG ≥ 3 log AU/mL neutralized all three variants. After SARS-CoV-2 vaccination, anti-S levels reached at least 3 logs regardless of pre-vaccination IgG levels, type of vaccine, and number of doses. Our study demonstrates a long-term persistence of anti-S IgG antibodies that may protect against reinfection. By significantly increasing cross-neutralizing antibody titers, a single-dose vaccination strengthens protection against escape mutants.

3.
Sci Adv ; 7(48): eabj5629, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1537882

ABSTRACT

Despite advances in COVID-19 management, identifying patients evolving toward death remains challenging. To identify early predictors of mortality within 60 days of symptom onset (DSO), we performed immunovirological assessments on plasma from 279 individuals. On samples collected at DSO11 in a discovery cohort, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA), low receptor binding domain­specific immunoglobulin G and antibody-dependent cellular cytotoxicity, and elevated cytokines and tissue injury markers were strongly associated with mortality, including in patients on mechanical ventilation. A three-variable model of vRNA, with predefined adjustment by age and sex, robustly identified patients with fatal outcome (adjusted hazard ratio for log-transformed vRNA = 3.5). This model remained robust in independent validation and confirmation cohorts. Since plasma vRNA's predictive accuracy was maintained at earlier time points, its quantitation can help us understand disease heterogeneity and identify patients who may benefit from new therapies.

4.
EBioMedicine ; 71: 103561, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1372964

ABSTRACT

BACKGROUND: Assessment of the kinetics of SARS-CoV-2 antibodies is essential in predicting risk of reinfection and durability of vaccine protection. METHODS: This is a prospective, monocentric, longitudinal, cohort clinical study. Healthcare workers (HCW) from Strasbourg University Hospital were enrolled between April 6th and May 7th, 2020 and followed up to 422 days. Serial serum samples were tested for antibodies against the Receptor Binding Domain (RBD) of the spike protein and nucleocapsid protein (N) to characterize the kinetics of SARS-CoV-2 antibodies and the incidence of reinfection. Live-neutralization assays were performed for a subset of samples before and after vaccination to analyze sensitivity to SARS-CoV-2 variants. FINDINGS: A total of 4290 samples from 393 convalescent COVID-19 and 916 COVID-19 negative individuals were analyzed. In convalescent individuals, SARS-CoV-2 antibodies followed a triphasic kinetic model with half-lives at month (M) 11-13 of 283 days (95% CI 231-349) for anti-N and 725 days (95% CI 623-921) for anti-RBD IgG, which stabilized at a median of 1.54 log BAU/mL (95% CI 1.42-1.67). The incidence of SARS-CoV-2 infections was 12.22 and 0.40 per 100 person-years in COVID-19-negative and COVID-19-positive HCW, respectively, indicating a relative reduction in the incidence of SARS-CoV-2 reinfection of 96.7%. Live-virus neutralization assay revealed that after one year, variants D614G and B.1.1.7, but less so B.1.351, were sensitive to anti-RBD antibodies at 1.4 log BAU/mL, while IgG ≥ 2.0 log BAU/mL strongly neutralized all three variants. These latter anti-RBD IgG titers were reached by all vaccinated HCW regardless of pre-vaccination IgG levels and type of vaccine. INTERPRETATION: Our study demonstrates a long-term persistence of anti-RBD antibodies that may reduce risk of reinfection. By significantly increasing cross-neutralizing antibody titers, a single-dose vaccination strengthens protection against variants. FUN1DING: None.


Subject(s)
COVID-19/pathology , Immunity, Humoral , Reinfection/pathology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Kinetics , Longitudinal Studies , Male , Middle Aged , Phosphoproteins/immunology , Prospective Studies , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Time Factors
6.
Nature ; 596(7871): 276-280, 2021 08.
Article in English | MEDLINE | ID: covidwho-1301174

ABSTRACT

The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Convalescence , Immune Evasion/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , France , Humans , India/epidemiology , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL