Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-310895

ABSTRACT

Since the emergence of SARS-CoV-2, governments have implemented a combination of public health responses based on non-pharmaceutical interventions (NPIs), with significant social and economic consequences. Quantifying the efficiency of different NPIs implemented by European countries to overcome the first epidemic wave could inform preparedness for forthcoming waves. We used a dataset compiled by the European Centre for Disease Control (ECDC) on daily COVID-19 incidence, mortality and NPI implementation in 32 European countries. We adapted a capture-recapture method to limit non-reporting bias in incidence data, which we fitted to an age-structured mathematical model coupled with Monte Carlo Markov Chain to quantify the efficiency of 258 public health responses (PHR, a combination of several NPIs) in reducing SARS-Cov-2 transmission rates. From these PHR efficiencies, we used time series analyses to isolate the effect of 13 NPIs at different levels of implementation (fully implemented vs. partially relaxed). Public health responses implemented in Europe led to a median decrease in viral transmission of 71%, enough to suppress the epidemic. PHR efficiency was positively associated with the number of NPIs implemented simultaneously. The largest effect among NPIs was observed for stay at home orders targeted at risk groups (b=0.24, 95%CI 0.16-0.32) and teleworking (b=0.23, 95%CI 0.15-0.31), followed by enforced stay at home orders for the general population, closure of non-essential businesses and services, bans on gatherings of 50 individuals or more, and closure of universities. Partial relaxation of most NPIs resulted in lower than average or non-significant changes in response efficiency. This large-scale estimation of NPI and PHR efficiency against SARS-COV-2 transmission in Europe suggests that a combination of NPIs targeting different population groups should be favored to control future epidemic waves.Funding Statement: HG and BR are supported by a grant from the “Agence Nationale de la Recherche” (ANRDigEpi).Declaration of Interests: The authors declare that they have no conflict of interests.Ethics Approval Statement: No ethics approval was necessary.

2.
Front Public Health ; 9: 654299, 2021.
Article in English | MEDLINE | ID: covidwho-1348570

ABSTRACT

There are many outstanding questions about how to control the global COVID-19 pandemic. The information void has been especially stark in the World Health Organization Africa Region, which has low per capita reported cases, low testing rates, low access to therapeutic drugs, and has the longest wait for vaccines. As with all disease, the central challenge in responding to COVID-19 is that it requires integrating complex health systems that incorporate prevention, testing, front line health care, and reliable data to inform policies and their implementation within a relevant timeframe. It requires that the population can rely on the health system, and decision-makers can rely on the data. To understand the process and challenges of such an integrated response in an under-resourced rural African setting, we present the COVID-19 strategy in Ifanadiana District, where a partnership between Malagasy Ministry of Public Health (MoPH) and non-governmental organizations integrates prevention, diagnosis, surveillance, and treatment, in the context of a model health system. These efforts touch every level of the health system in the district-community, primary care centers, hospital-including the establishment of the only RT-PCR lab for SARS-CoV-2 testing outside of the capital. Starting in March of 2021, a second wave of COVID-19 occurred in Madagascar, but there remain fewer cases in Ifanadiana than for many other diseases (e.g., malaria). At the Ifanadiana District Hospital, there have been two deaths that are officially attributed to COVID-19. Here, we describe the main components and challenges of this integrated response, the broad epidemiological contours of the epidemic, and how complex data sources can be developed to address many questions of COVID-19 science. Because of data limitations, it still remains unclear how this epidemic will affect rural areas of Madagascar and other developing countries where health system utilization is relatively low and there is limited capacity to diagnose and treat COVID-19 patients. Widespread population based seroprevalence studies are being implemented in Ifanadiana to inform the COVID-19 response strategy as health systems must simultaneously manage perennial and endemic disease threats.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Madagascar/epidemiology , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies
3.
Epidemics ; 33: 100424, 2020 12.
Article in English | MEDLINE | ID: covidwho-962187

ABSTRACT

Due to the COVID-19 pandemic, many countries have implemented a complete lockdown of their population that may not be sustainable for long. To identify the best strategy to replace this full lockdown, sophisticated models that rely on mobility data have been developed. In this study, using the example of France as a case-study, we develop a simple model considering contacts between age classes to derive the general impact of partial lockdown strategies targeted at specific age groups. We found that epidemic suppression can only be achieved by targeting isolation of young and middle age groups with high efficiency. All other strategies tested result in a flatter epidemic curve, with outcomes in (e.g. mortality and health system over-capacity) dependent of the age groups targeted and the isolation efficiency. Targeting only the elderly can decrease the expected mortality burden, but in proportions lower than more integrative strategies involving several age groups. While not aiming to provide quantitative forecasts, our study shows the benefits and constraints of different partial lockdown strategies, which could help guide decision-making.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control , Aged , COVID-19/epidemiology , COVID-19/transmission , Child , France/epidemiology , Humans , Middle Aged , Pandemics , Physical Distancing , Quarantine , SARS-CoV-2 , Young Adult
4.
Glob Health Action ; 13(1): 1816044, 2020 12 31.
Article in English | MEDLINE | ID: covidwho-814069

ABSTRACT

COVID-19 has wreaked havoc globally with particular concerns for sub-Saharan Africa (SSA), where models suggest that the majority of the population will become infected. Conventional wisdom suggests that the continent will bear a higher burden of COVID-19 for the same reasons it suffers from other infectious diseases: ecology, socio-economic conditions, lack of water and sanitation infrastructure, and weak health systems. However, so far SSA has reported lower incidence and fatalities compared to the predictions of standard models and the experience of other regions of the world. There are three leading explanations, each with different implications for the final epidemic burden: (1) low case detection, (2) differences in epidemiology (e.g. low R 0 ), and (3) policy interventions. The low number of cases have led some SSA governments to relaxing these policy interventions. Will this result in a resurgence of cases? To understand how to interpret the lower-than-expected COVID-19 case data in Madagascar, we use a simple age-structured model to explore each of these explanations and predict the epidemic impact associated with them. We show that the incidence of COVID-19 cases as of July 2020 can be explained by any combination of the late introduction of first imported cases, early implementation of non-pharmaceutical interventions (NPIs), and low case detection rates. We then re-evaluate these findings in the context of the COVID-19 epidemic in Madagascar through August 2020. This analysis reinforces that Madagascar, along with other countries in SSA, remains at risk of a growing health crisis. If NPIs remain enforced, up to 50,000 lives may be saved. Even with NPIs, without vaccines and new therapies, COVID-19 could infect up to 30% of the population, making it the largest public health threat in Madagascar for the coming year, hence the importance of clinical trials and continually improving access to healthcare.


Subject(s)
Coronavirus Infections/epidemiology , Models, Theoretical , Pneumonia, Viral/epidemiology , Africa South of the Sahara/epidemiology , COVID-19 , Humans , Incidence , Madagascar/epidemiology , Pandemics
5.
Ecol Lett ; 23(11): 1557-1560, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-738806

ABSTRACT

Concerns about the prospect of a global pandemic have been triggered many times during the last two decades. These have been realised through the current COVID-19 pandemic, due to a new coronavirus SARS-CoV2, which has impacted almost every country on Earth. Here, we show how considering the pandemic through the lenses of the evolutionary ecology of pathogens can help better understand the root causes and devise solutions to prevent the emergence of future pandemics. We call for better integration of these approaches into transdisciplinary research and invite scientists working on the evolutionary ecology of pathogens to contribute to a more "solution-oriented" agenda with practical applications, emulating similar movements in the field of economics in recent decades.


Subject(s)
Betacoronavirus , COVID-19 , Coronavirus Infections , Pneumonia, Viral , Coronavirus Infections/epidemiology , Disease Outbreaks/prevention & control , Ecology , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL