Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet Infect Dis ; 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2004660

ABSTRACT

On Jan 22, 2020, a day after the USA reported its first COVID-19 case, the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) launched the first global real-time coronavirus surveillance system: the JHU CSSE COVID-19 Dashboard. As of June 1, 2022, the dashboard has served the global audience for more than 30 consecutive months, totalling over 226 billion feature layer requests and 3·6 billion page views. The highest daily record was set on March 29, 2020, with more than 69 billion requests and over 4·6 billion views. This Personal View reveals the fundamental technical details of the entire data system underlying the dashboard, including data collection, data fusion logic, data curation and sharing, anomaly detection, data corrections, and the human resources required to support such an effort. The Personal View also covers the challenges, ranging from data visualisation to reporting standardisation. The details presented here help develop a framework for future, large-scale public health-related data collection and reporting.

2.
American Journal of Public Health ; 112(6):839-842, 2022.
Article in English | ProQuest Central | ID: covidwho-1877289

ABSTRACT

[...]models can vary in terms of what data they use, what they assume about transmission, and what analytic approach they use to produce projections. Because of this, relying on one model is dangerous because there is no guarantee that one model's choices and assumptions will yield an accurate prediction. In many fields, there is a long tradition of combining multiple models to mitigate this limitation by providing a single prediction that summarizes the view of the participating models.7 There has been a growing interest in using ensemble methodologies in epidemiology, with notable efforts in forecasting, risk prediction, causal inference, and decision-making.8-12 COORDINATION, COLLABORATION, AND EVALUATION A modeling "hub" is a consortium of research groups organized around a particular scientific challenge. The US COVID-19 Forecast Hub ensemble (including many component models) has struggled to produce accurate forecasts of cases and hospitalizations during periods of rapidly changing epidemic dynamics, such as the US peak of the winter wave in early 2021 or the rapid increases associated with the Delta variant in summer 2021 or in winter 2021-2022.3 Likewise, although longer-term projections from the COVID-19 Scenario Modeling Hub projected a Delta-associated resurgence in the United States, the ensemble significantly underestimated its speed and size, even though there were no clear deviations from scenario assumptions.13 However, even when projections are wrong, the hubs play a role in enhancing the scientific rigor and integrity of epidemic modeling. [...]operationally, there is value in developing procedures that harness the insights of a diverse network of scientists while guarding against groupthink and overconfidence.12 As researchers, system developers, and public health officials who have been deeply involved in the real-time operation of modeling hubs duringthe COVID-19 pandemic and prior epidemics, we believe the hub approach is a vital path forward for predictive disease modeling efforts.

3.
Commun Biol ; 5(1): 439, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1839575

ABSTRACT

SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Pandemics , SARS-CoV-2/genetics , United States/epidemiology
4.
Lancet Infect Dis ; 21(5): e113, 2021 05.
Article in English | MEDLINE | ID: covidwho-1510467
5.
One Health ; 12: 100225, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1071821

ABSTRACT

Meteorological variables, such as the ambient temperature and humidity, play a well-established role in the seasonal transmission of respiratory viruses and influenza in temperate climates. Since the onset of the novel coronavirus disease 2019 (COVID-19) pandemic, a growing body of literature has attempted to characterize the sensitivity of COVID-19 to meteorological factors and thus understand how changes in the weather and seasonality may impede COVID-19 transmission. Here we select a subset of this literature, summarize the diversity in these studies' scopes and methodologies, and show the lack of consensus in their conclusions on the roles of temperature, humidity, and other meteorological factors on COVID-19 transmission dynamics. We discuss how several aspects of studies' methodologies may challenge direct comparisons across studies and inflate the importance of meteorological factors on COVID-19 transmission. We further comment on outstanding challenges for this area of research and how future studies might overcome them by carefully considering robust modeling approaches, adjusting for mediating and covariate effects, and choosing appropriate scales of analysis.

6.
Lancet Infect Dis ; 20(11): 1247-1254, 2020 11.
Article in English | MEDLINE | ID: covidwho-621939

ABSTRACT

BACKGROUND: Within 4 months of COVID-19 first being reported in the USA, it spread to every state and to more than 90% of all counties. During this period, the US COVID-19 response was highly decentralised, with stay-at-home directives issued by state and local officials, subject to varying levels of enforcement. The absence of a centralised policy and timeline combined with the complex dynamics of human mobility and the variable intensity of local outbreaks makes assessing the effect of large-scale social distancing on COVID-19 transmission in the USA a challenge. METHODS: We used daily mobility data derived from aggregated and anonymised cell (mobile) phone data, provided by Teralytics (Zürich, Switzerland) from Jan 1 to April 20, 2020, to capture real-time trends in movement patterns for each US county, and used these data to generate a social distancing metric. We used epidemiological data to compute the COVID-19 growth rate ratio for a given county on a given day. Using these metrics, we evaluated how social distancing, measured by the relative change in mobility, affected the rate of new infections in the 25 counties in the USA with the highest number of confirmed cases on April 16, 2020, by fitting a statistical model for each county. FINDINGS: Our analysis revealed that mobility patterns are strongly correlated with decreased COVID-19 case growth rates for the most affected counties in the USA, with Pearson correlation coefficients above 0·7 for 20 of the 25 counties evaluated. Additionally, the effect of changes in mobility patterns, which dropped by 35-63% relative to the normal conditions, on COVID-19 transmission are not likely to be perceptible for 9-12 days, and potentially up to 3 weeks, which is consistent with the incubation time of severe acute respiratory syndrome coronavirus 2 plus additional time for reporting. We also show evidence that behavioural changes were already underway in many US counties days to weeks before state-level or local-level stay-at-home policies were implemented, implying that individuals anticipated public health directives where social distancing was adopted, despite a mixed political message. INTERPRETATION: This study strongly supports a role of social distancing as an effective way to mitigate COVID-19 transmission in the USA. Until a COVID-19 vaccine is widely available, social distancing will remain one of the primary measures to combat disease spread, and these findings should serve to support more timely policy making around social distancing in the USA in the future. FUNDING: None.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Government Regulation , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Public Health , Quarantine/methods , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL