Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Lancet Rheumatol ; 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1591231

ABSTRACT

Background: Many individuals take long-term immunosuppressive medications. We evaluated whether these individuals have worse outcomes when hospitalised with COVID-19 compared with non-immunosuppressed individuals. Methods: We conducted a retrospective cohort study using data from the National COVID Cohort Collaborative (N3C), the largest longitudinal electronic health record repository of patients in hospital with confirmed or suspected COVID-19 in the USA, between Jan 1, 2020, and June 11, 2021, within 42 health systems. We compared adults with immunosuppressive medications used before admission to adults without long-term immunosuppression. We considered immunosuppression overall, as well as by 15 classes of medication and three broad indications for immunosuppressive medicines. We used Fine and Gray's proportional subdistribution hazards models to estimate the hazard ratio (HR) for the risk of invasive mechanical ventilation, with the competing risk of death. We used Cox proportional hazards models to estimate HRs for in-hospital death. Models were adjusted using doubly robust propensity score methodology. Findings: Among 231 830 potentially eligible adults in the N3C repository who were admitted to hospital with confirmed or suspected COVID-19 during the study period, 222 575 met the inclusion criteria (mean age 59 years [SD 19]; 111 269 [50%] male). The most common comorbidities were diabetes (23%), pulmonary disease (17%), and renal disease (13%). 16 494 (7%) patients had long-term immunosuppression with medications for diverse conditions, including rheumatological disease (33%), solid organ transplant (26%), or cancer (22%). In the propensity score matched cohort (including 12 841 immunosuppressed patients and 29 386 non-immunosuppressed patients), immunosuppression was associated with a reduced risk of invasive ventilation (HR 0·89, 95% CI 0·83-0·96) and there was no overall association between long-term immunosuppression and the risk of in-hospital death. None of the 15 medication classes examined were associated with an increased risk of invasive mechanical ventilation. Although there was no statistically significant association between most drugs and in-hospital death, increases were found with rituximab for rheumatological disease (1·72, 1·10-2·69) and for cancer (2·57, 1·86-3·56). Results were generally consistent across subgroup analyses that considered race and ethnicity or sex, as well as across sensitivity analyses that varied exposure, covariate, and outcome definitions. Interpretation: Among this cohort, with the exception of rituximab, there was no increased risk of mechanical ventilation or in-hospital death for the rheumatological, antineoplastic, or antimetabolite therapies examined. Funding: None.

2.
Am J Kidney Dis ; 2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1575031

ABSTRACT

RATIONALE AND OBJECTIVE: Acute kidney injury (AKI) is common in patients with COVID-19 and associated with poor outcomes. Urinary biomarkers have been associated with adverse kidney outcomes in other settings and may provide additional prognostic information in patients with COVID-19. We investigated the association between urinary biomarkers with adverse kidney outcomes among patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING AND PARTICIPANTS: Patients hospitalized with COVID-19 (n=153) at 2 academic medical centers between April and June 2020. EXPOSURES: 19 urinary biomarkers of injury, inflammation, and repair. OUTCOMES: Composite of KDIGO stage 3 AKI, requirement for dialysis, or death within 60 days of hospital admission. We also compared various kidney biomarker levels in the setting of COVID-19 versus other common AKI settings. ANALYTIC APPROACH: Time-varying Cox proportional hazards regression to associate biomarker level with composite outcome. RESULTS: Out of 153 patients, 24 (15.7%) experienced the primary outcome. Two-fold higher levels of neutrophil gelatinase-associated lipocalin (NGAL) (HR: 1.34; 95% CI: 1.14-1.57), monocyte chemoattractant protein (MCP-1) (HR: 1.42; 95% CI: 1.09-1.84), and kidney injury molecule-1 (KIM-1) (HR: 2.03; 95% CI: 1.38-2.99) were associated with highest risk of sustaining primary composite outcome. Higher epidermal growth factor (EGF) levels were associated with a lower risk of the primary outcome (HR 0.61; 95% CI: 0.47-0.79). Individual biomarkers provided moderate discrimination and biomarker combinations improved discrimination for the primary outcome. The degree of kidney injury by biomarker level in COVID-19 was comparable to other settings of clinical AKI. There was evidence of subclinical AKI in COVID-19 patients based on elevated injury biomarker level in patients without clinical AKI defined by serum creatinine. LIMITATIONS: Small sample size with low number of composite outcome events. CONCLUSION: Urinary biomarkers are associated with adverse kidney outcomes in patients hospitalized with COVID-19 and may provide valuable information to monitor kidney disease progression and recovery.

3.
Clin Infect Dis ; 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1574369

ABSTRACT

BACKGROUND: There is an urgent need to understand the real-world effectiveness of remdesivir in the treatment of SARS-CoV-2. METHODS: This was a retrospective comparative effectiveness study. Individuals hospitalized in a large private healthcare network in the US from February 23, 2020 through February 11, 2021 with a positive test for SARS-CoV-2 and ICD-10 diagnosis codes consistent with symptomatic COVID-19 were included. Remdesivir recipients were matched to controls using time-dependent propensity scores. The primary outcome was time to improvement with a secondary outcome of time to death. RESULTS: Of 96,859 COVID-19 patients, 42,473 (43.9%) received at least one remdesivir dose. The median age of remdesivir recipients was 65 years, 23,701 (55.8%) were male and 22,819 (53.7%) were non-white. Matches were found for 18,328 patients (43.2%). Remdesivir recipients were significantly more likely to achieve clinical improvement by 28 days (adjusted hazard ratio [1.19, 95% confidence interval (CI), 1.16-1.22]). Remdesivir patients on no oxygen (aHR 1.30, 95% CI 1.22-1.38) or low-flow oxygen (aHR 1.23, 95% CI 1.19-1.27) were significantly more likely to achieve clinical improvement by 28 days. There was no significant impact on the likelihood of mortality overall (aHR 1.02, 95% CI 0.97-1.08). Remdesivir recipients on low-flow oxygen were significantly less likely to die than controls (aHR 0.85, 95% CI 0.77-0.92; 28-day mortality 8.4% [865 deaths] for remdesivir patients, 12.5% [1,334 deaths] for controls). CONCLUSIONS: These results support the use of remdesivir for hospitalized COVID-19 patients on no or low-flow oxygen. Routine initiation of remdesivir in more severely ill patients is unlikely to be beneficial.

4.
Crit Care Med ; 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1511045

ABSTRACT

OBJECTIVES: High-flow nasal cannula is widely used in acute hypoxemic respiratory failure due to coronavirus disease 2019, yet data regarding its effectiveness is lacking. More evidence is needed to guide patient selection, timing of high-flow nasal cannula initiation, and resource allocation. We aimed to assess time to discharge and time to death in severe coronavirus disease 2019 in patients treated with high-flow nasal cannula compared with matched controls. We also evaluated the ability of the respiratory rate-oxygenation ratio to predict progression to invasive mechanical ventilation. DESIGN: Time-dependent propensity score matching was used to create pairs of individuals who were then analyzed in a Cox proportional-hazards regression model to estimate high-flow nasal cannula's effect on time to discharge and time to death. A secondary analysis excluded high-flow nasal cannula patients intubated within 6 hours of admission. A Cox proportional-hazards regression model was used to assess risk of invasive mechanical ventilation among high-flow nasal cannula patients stratified by respiratory rate-oxygenation. SETTING: The five hospitals of the Johns Hopkins Health System. PATIENTS: All patients who were admitted with a laboratory-confirmed diagnosis of coronavirus disease 2019 were eligible for inclusion. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: High-flow nasal cannula was associated with longer median time to discharge: 10.6 days (interquartile range, 7.1-15.8 d) versus 7.8 days (interquartile range, 4.9-12.1 d). Respiratory rate-oxygenation index performed poorly in predicting ventilation or death. In the primary analysis, there was no significant association between high-flow nasal cannula and hazard of death (adjusted hazard ratio, 0.79; 95% CI, 0.57-1.09). Excluding patients intubated within 6 hours of admission, high-flow nasal cannula was associated with reduced hazard of death (adjusted hazard ratio, 0.67; 95% CI, 0.45-0.99). CONCLUSIONS: Among unselected patients with severe coronavirus disease 2019 pneumonia, high-flow nasal cannula was not associated with a statistically significant reduction in hazard of death. However, in patients not mechanically ventilated within 6 hours of admission, high-flow nasal cannula was associated with a significantly reduced hazard of death.

6.
Ann Intern Med ; 174(10): 1395-1403, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1481181

ABSTRACT

BACKGROUND: Relatively little is known about the use patterns of potential pharmacologic treatments of COVID-19 in the United States. OBJECTIVE: To use the National COVID Cohort Collaborative (N3C), a large, multicenter, longitudinal cohort, to characterize the use of hydroxychloroquine, remdesivir, and dexamethasone, overall as well as across individuals, health systems, and time. DESIGN: Retrospective cohort study. SETTING: 43 health systems in the United States. PARTICIPANTS: 137 870 adults hospitalized with COVID-19 between 1 February 2020 and 28 February 2021. MEASUREMENTS: Inpatient use of hydroxychloroquine, remdesivir, or dexamethasone. RESULTS: Among 137 870 persons hospitalized with confirmed or suspected COVID-19, 8754 (6.3%) received hydroxychloroquine, 29 272 (21.2%) remdesivir, and 53 909 (39.1%) dexamethasone during the study period. Since the release of results from the RECOVERY (Randomised Evaluation of COVID-19 Therapy) trial in mid-June, approximately 78% to 84% of people who have had invasive mechanical ventilation have received dexamethasone or other glucocorticoids. The use of hydroxychloroquine increased during March 2020, peaking at 42%, and started declining by April 2020. By contrast, remdesivir and dexamethasone use gradually increased over the study period. Dexamethasone and remdesivir use varied substantially across health centers (intraclass correlation coefficient, 14.2% for dexamethasone and 84.6% for remdesivir). LIMITATION: Because most N3C data contributors are academic medical centers, findings may not reflect the experience of community hospitals. CONCLUSION: Dexamethasone, an evidence-based treatment of COVID-19, may be underused among persons who are mechanically ventilated. The use of remdesivir and dexamethasone varied across health systems, suggesting variation in patient case mix, drug access, treatment protocols, and quality of care. PRIMARY FUNDING SOURCE: National Center for Advancing Translational Sciences; National Heart, Lung, and Blood Institute; and National Institute on Aging.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Dexamethasone/therapeutic use , Hydroxychloroquine/therapeutic use , Practice Patterns, Physicians' , Adenosine Monophosphate/therapeutic use , Adolescent , Adult , Aged , Alanine/therapeutic use , Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Female , Humans , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , United States , Young Adult
8.
Am J Epidemiol ; 190(10): 2094-2106, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447568

ABSTRACT

Longitudinal trajectories of vital signs and biomarkers during hospital admission of patients with COVID-19 remain poorly characterized despite their potential to provide critical insights about disease progression. We studied 1884 patients with severe acute respiratory syndrome coronavirus 2 infection from April 3, 2020, to June 25, 2020, within 1 Maryland hospital system and used a retrospective longitudinal framework with linear mixed-effects models to investigate relevant biomarker trajectories leading up to 3 critical outcomes: mechanical ventilation, discharge, and death. Trajectories of 4 vital signs (respiratory rate, ratio of oxygen saturation (Spo2) to fraction of inspired oxygen (Fio2), pulse, and temperature) and 4 laboratory values (C-reactive protein (CRP), absolute lymphocyte count (ALC), estimated glomerular filtration rate, and D-dimer) clearly distinguished the trajectories of patients with COVID-19. Before any ventilation, log(CRP), log(ALC), respiratory rate, and Spo2-to-Fio2 ratio trajectories diverge approximately 8-10 days before discharge or death. After ventilation, log(CRP), log(ALC), respiratory rate, Spo2-to-Fio2 ratio, and estimated glomerular filtration rate trajectories again diverge 10-20 days before death or discharge. Trajectories improved until discharge and remained unchanged or worsened until death. Our approach characterizes the distribution of biomarker trajectories leading up to competing outcomes of discharge versus death. Moving forward, this model can contribute to quantifying the joint probability of biomarkers and outcomes when provided clinical data up to a given moment.


Subject(s)
Biomarkers/metabolism , COVID-19/metabolism , Outcome Assessment, Health Care , Pneumonia, Viral/metabolism , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Disease Progression , Female , Humans , Longitudinal Studies , Male , Maryland/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2 , Vital Signs
9.
Open Forum Infect Dis ; 8(9): ofab448, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1443088

ABSTRACT

Background: Males experience increased severity of illness and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compared with females, but the mechanisms of male susceptibility are unclear. Methods: We performed a retrospective cohort analysis of SARS-CoV-2 testing and admission data at 5 hospitals in the Maryland/Washington DC area. Using age-stratified logistic regression models, we quantified the impact of male sex on the risk of the composite outcome of severe disease or death (World Health Organization score 5-8) and tested the impact of demographics, comorbidities, health behaviors, and laboratory inflammatory markers on the sex effect. Results: Among 213 175 SARS-CoV-2 tests, despite similar positivity rates, males in age strata between 18 and 74 years were more frequently hospitalized. For the 2626 hospitalized individuals, clinical inflammatory markers (interleukin-6, C-reactive protein, ferritin, absolute lymphocyte count, and neutrophil:lymphocyte ratio) were more favorable for females than males (P < .001). Among 18-49-year-olds, male sex carried a higher risk of severe outcomes, both early (odds ratio [OR], 3.01; 95% CI, 1.75 to 5.18) and at peak illness during hospitalization (OR, 2.58; 95% CI, 1.78 to 3.74). Despite multiple differences in demographics, presentation features, comorbidities, and health behaviors, these variables did not change the association of male sex with severe disease. Only clinical inflammatory marker values modified the sex effect, reducing the OR for severe outcomes in males aged 18-49 years to 1.81 (95% CI, 1.00 to 3.26) early and 1.39 (95% CI, 0.93 to 2.08) at peak illness. Conclusions: Higher inflammatory laboratory test values were associated with increased risk of severe coronavirus disease 2019 for males. A sex-specific inflammatory response to SARS-CoV-2 infection may underlie the sex differences in outcomes.

11.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1306627

ABSTRACT

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Subject(s)
COVID-19 , Databases, Factual , Forecasting , Hospitalization , Models, Biological , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Comorbidity , Extracorporeal Membrane Oxygenation , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States , Young Adult
12.
Front Cardiovasc Med ; 8: 667721, 2021.
Article in English | MEDLINE | ID: covidwho-1291179

ABSTRACT

Background: Although troponin elevation is common in COVID-19, the extent of myocardial dysfunction and its contributors to dysfunction are less well-characterized. We aimed to determine the prevalence of subclinical myocardial dysfunction and its association with mortality using speckle tracking echocardiography (STE), specifically global longitudinal strain (GLS) and myocardial work efficiency (MWE). We also tested the hypothesis that reduced myocardial function was associated with increased systemic inflammation in COVID-19. Methods and Results: We conducted a retrospective study of hospitalized COVID-19 patients undergoing echocardiography (n = 136), of whom 83 and 75 had GLS (abnormal >-16%) and MWE (abnormal <95%) assessed, respectively. We performed adjusted logistic regression to examine associations of GLS and MWE with in-hospital mortality. Patients were mean 62 ± 14 years old (58% men). While 81% had normal left ventricular ejection fraction (LVEF), prevalence of myocardial dysfunction was high by STE; [39/83 (47%) had abnormal GLS; 59/75 (79%) had abnormal MWE]. Higher MWE was associated with lower in-hospital mortality in unadjusted [OR 0.92 (95% CI 0.85-0.99); p = 0.048] and adjusted models [aOR 0.87 (95% CI 0.78-0.97); p = 0.009]. In addition, increased systemic inflammation measured by interleukin-6 level was associated with reduced MWE. Conclusions: Subclinical myocardial dysfunction is common in COVID-19 patients with clinical echocardiograms, even in those with normal LVEF. Reduced MWE is associated with higher interleukin-6 levels and increased in-hospital mortality. Non-invasive STE represents a readily available method to rapidly evaluate myocardial dysfunction in COVID-19 patients and can play an important role in risk stratification.

13.
Postgrad Med J ; 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1247396

ABSTRACT

COVID-19 continues to be a major source of global morbidity and mortality. It abruptly stressed healthcare systems early in 2020 and the pressures continue. Devastating hardships have been endured by individuals, families and communities; the losses will be felt for years to come. As healthcare professionals and organisations stepped up to respond to the overwhelming number of cases, it is understandable that the focus has been primarily on coping with the quantity of the demand. During a pandemic, it is not surprising that few papers have drawn attention to the quality of the care delivered to those afflicted with illness. Despite the challenges, clinicians caring for patients with COVID-19 have risen to the occasion. This manuscript highlights aspirational examples from the published literature of thoughtful and superb care of patients with COVID-19 using an established framework for clinical excellence (formulated by the Miller-Coulson Academy of Clinical Excellence).

14.
Health Secur ; 19(3): 318-326, 2021.
Article in English | MEDLINE | ID: covidwho-1171919

ABSTRACT

The impact of host genomics on an individual's susceptibility, immune response, and risk of severe outcomes for a given infectious pathogen is increasingly recognized. As we uncover the links between host genomics and infectious disease, a number of ethical, legal, and social issues need to be considered when using that information in clinical practice or workforce decisions. We conducted a survey of the clinical staff at 10 federally funded Regional Ebola and Other Special Pathogen Treatment Centers to understand their views regarding the ethical, legal, and social issues related to host genomics and the administrative and clinical functions of high-level isolation units. Respondents overwhelmingly agreed that genomics could provide valuable information to identify patients and employees at higher risk for poor outcomes from highly infectious diseases. However, there was considerable disagreement about whether such data should inform the allocation of scarce resources or determine treatment decisions. While most respondents supported a confidential employer-based genomic testing system to inform individual employees about risk, respondents disagreed about whether such information should be used in staffing models. Respondents who thought genomic information would be valuable for patient treatment were more willing to undergo genetic testing for staffing purposes. Most respondents felt they would benefit from additional training to better interpret results from genetic testing. Although this study was completed before the COVID-19 pandemic, the responses provide a baseline assessment of provider attitudes that can inform policy during the current pandemic and in future infectious disease outbreaks.


Subject(s)
Attitude of Health Personnel , Biomedical Research/ethics , Genomics/ethics , Health Personnel/ethics , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/prevention & control , Humans
15.
Am J Med ; 134(8): 1029-1033, 2021 08.
Article in English | MEDLINE | ID: covidwho-1163305

ABSTRACT

BACKGROUND: Cytokines seen in severe coronavirus disease 2019 (COVID-19) are associated with proliferation, differentiation, and survival of plasma cells. Plasma cells are not routinely found in peripheral blood, though may produce virus-neutralizing antibodies in COVID-19 later in the course of an infection. METHODS: Using the Johns Hopkins COVID-19 Precision Medicine Analytics Platform Registry, we identified hospitalized adult patients with confirmed severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and stratified by presence of plasma cells and World Health Organization (WHO) disease severity. To identify plasma cells, we employed a sensitive flow cytometric screening method for highly fluorescent lymphocytes and confirmed these microscopically. Cox regression models were used to evaluate time to death and time to clinical improvement by the presence of plasma cells in patients with severe disease. RESULTS: Of 2301 hospitalized patients with confirmed infection, 371 had plasma cells identified. Patients with plasma cells were more likely to have severe disease, though 86.6% developed plasma cells after onset of severe disease. In patients with severe disease, after adjusting for age, sex, body mass index, race, and other covariates associated with disease severity, patients with plasma cells had a reduced hazard of death (adjusted hazard ratio: 0.57; 95% confidence interval: 0.38-0.87; P value: .008). There was no significant association with the presence of plasma cells and time to clinical improvement. CONCLUSIONS: Patients with severe disease who have detectable plasma cells in the peripheral blood have improved mortality despite adjusting for known covariates associated with disease severity in COVID-19. Further investigation is warranted to understand the role of plasma cells in the immune response to COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 , Plasma Cells , COVID-19/blood , COVID-19/mortality , COVID-19/physiopathology , Female , Humans , Immunity, Cellular , Male , Mass Screening/methods , Middle Aged , Mortality , Plasma Cells/immunology , Plasma Cells/pathology , Predictive Value of Tests , Prognosis , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , United States/epidemiology
16.
JAMA Netw Open ; 4(3): e213071, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1147545

ABSTRACT

Importance: Clinical effectiveness data on remdesivir are urgently needed, especially among diverse populations and in combination with other therapies. Objective: To examine whether remdesivir administered with or without corticosteroids for treatment of coronavirus disease 2019 (COVID-19) is associated with more rapid clinical improvement in a racially/ethnically diverse population. Design, Setting, and Participants: This retrospective comparative effectiveness research study was conducted from March 4 to August 29, 2020, in a 5-hospital health system in the Baltimore, Maryland, and Washington, DC, area. Of 2483 individuals with confirmed severe acute respiratory syndrome coronavirus 2 infection assessed by polymerase chain reaction, those who received remdesivir were matched to infected individuals who did not receive remdesivir using time-invariant covariates (age, sex, race/ethnicity, Charlson Comorbidity Index, body mass index, and do-not-resuscitate or do-not-intubate orders) and time-dependent covariates (ratio of peripheral blood oxygen saturation to fraction of inspired oxygen, blood pressure, pulse, temperature, respiratory rate, C-reactive protein level, complete white blood cell count, lymphocyte count, albumin level, alanine aminotransferase level, glomerular filtration rate, dimerized plasmin fragment D [D-dimer] level, and oxygen device). An individual in the remdesivir group with k days of treatment was matched to a control patient who stayed in the hospital at least k days (5 days maximum) beyond the matching day. Exposures: Remdesivir treatment with or without corticosteroid administration. Main Outcomes and Measures: The primary outcome was rate of clinical improvement (hospital discharge or decrease of 2 points on the World Health Organization severity score), and the secondary outcome, mortality at 28 days. An additional outcome was clinical improvement and time to death associated with combined remdesivir and corticosteroid treatment. Results: Of 2483 consecutive admissions, 342 individuals received remdesivir, 184 of whom also received corticosteroids and 158 of whom received remdesivir alone. For these 342 patients, the median age was 60 years (interquartile range, 46-69 years), 189 (55.3%) were men, and 276 (80.7%) self-identified as non-White race/ethnicity. Remdesivir recipients had a shorter time to clinical improvement than matched controls without remdesivir treatment (median, 5.0 days [interquartile range, 4.0-8.0 days] vs 7.0 days [interquartile range, 4.0-10.0 days]; adjusted hazard ratio, 1.47 [95% CI, 1.22-1.79]). Remdesivir recipients had a 28-day mortality rate of 7.7% (22 deaths) compared with 14.0% (40 deaths) among matched controls, but this difference was not statistically significant in the time-to-death analysis (adjusted hazard ratio, 0.70; 95% CI, 0.38-1.28). The addition of corticosteroids to remdesivir was not associated with a reduced hazard of death at 28 days (adjusted hazard ratio, 1.94; 95% CI, 0.67-5.57). Conclusions and Relevance: In this comparative effectiveness research study of adults hospitalized with COVID-19, receipt of remdesivir was associated with faster clinical improvement in a cohort of predominantly non-White patients. Remdesivir plus corticosteroid administration did not reduce the time to death compared with remdesivir administered alone.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Hospitalization , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , Baltimore , COVID-19/virology , Case-Control Studies , Comparative Effectiveness Research , District of Columbia , Female , Hospital Mortality , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
17.
Ann Intern Med ; 174(6): 777-785, 2021 06.
Article in English | MEDLINE | ID: covidwho-1110712

ABSTRACT

BACKGROUND: Predicting the clinical trajectory of individual patients hospitalized with coronavirus disease 2019 (COVID-19) is challenging but necessary to inform clinical care. The majority of COVID-19 prognostic tools use only data present upon admission and do not incorporate changes occurring after admission. OBJECTIVE: To develop the Severe COVID-19 Adaptive Risk Predictor (SCARP) (https://rsconnect.biostat.jhsph.edu/covid_trajectory/), a novel tool that can provide dynamic risk predictions for progression from moderate disease to severe illness or death in patients with COVID-19 at any time within the first 14 days of their hospitalization. DESIGN: Retrospective observational cohort study. SETTINGS: Five hospitals in Maryland and Washington, D.C. PATIENTS: Patients who were hospitalized between 5 March and 4 December 2020 with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed by nucleic acid test and symptomatic disease. MEASUREMENTS: A clinical registry for patients hospitalized with COVID-19 was the primary data source; data included demographic characteristics, admission source, comorbid conditions, time-varying vital signs, laboratory measurements, and clinical severity. Random forest for survival, longitudinal, and multivariate (RF-SLAM) data analysis was applied to predict the 1-day and 7-day risks for progression to severe disease or death for any given day during the first 14 days of hospitalization. RESULTS: Among 3163 patients admitted with moderate COVID-19, 228 (7%) became severely ill or died in the next 24 hours; an additional 355 (11%) became severely ill or died in the next 7 days. The area under the receiver-operating characteristic curve (AUC) for 1-day risk predictions for progression to severe disease or death was 0.89 (95% CI, 0.88 to 0.90) and 0.89 (CI, 0.87 to 0.91) during the first and second weeks of hospitalization, respectively. The AUC for 7-day risk predictions for progression to severe disease or death was 0.83 (CI, 0.83 to 0.84) and 0.87 (CI, 0.86 to 0.89) during the first and second weeks of hospitalization, respectively. LIMITATION: The SCARP tool was developed by using data from a single health system. CONCLUSION: Using the predictive power of RF-SLAM and longitudinal data from more than 3000 patients hospitalized with COVID-19, an interactive tool was developed that rapidly and accurately provides the probability of an individual patient's progression to severe illness or death on the basis of readily available clinical information. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Subject(s)
COVID-19/mortality , COVID-19/pathology , Hospital Mortality , Patient Acuity , Pneumonia, Viral/mortality , Risk Assessment/methods , Aged , Aged, 80 and over , Disease Progression , District of Columbia/epidemiology , Female , Hospitalization , Humans , Male , Maryland/epidemiology , Middle Aged , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Registries , Retrospective Studies , Risk Factors , SARS-CoV-2
18.
Ultrasound J ; 13(1): 12, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1105733

ABSTRACT

BACKGROUND: As medical infrastructures are strained by SARS-CoV-2, rapid and accurate screening tools are essential. In portions of the world, reverse transcription polymerase chain reaction (RT-PCR) testing remains slow and in limited supply, and computed tomography is expensive, inefficient, and involves exposure to ionizing radiation. Multiple studies evaluating the efficiency of lung point-of-care ultrasound (POCUS) have been published recently, but include relatively small cohorts and often focus on characteristics associated with severe illness rather than screening efficacy. This study utilizes a retrospective cohort to evaluate the test characteristics (sensitivity, specificity, likelihood ratios, predictive values) of lung POCUS in the diagnosis of SARS-CoV-2, and to determine lung score cutoffs that maximize performance for use as a screening tool. RESULTS: Lung POCUS examinations had sensitivity 86%, specificity 71.6%, NPV 81.7%, and PPV 77.7%. The Lung Ultrasound Score had an area under the curve of 0.84 (95% CI 0.78, 0.90). When including only complete examinations visualizing 12 lung fields, lung POCUS had sensitivity 90.9% and specificity 75.6%, with NPV 87.2% and PPV 82.0% and an area under the curve of 0.89 (95% CI 0.83, 0.96). Lung POCUS was less accurate in patients with a history of interstitial lung disease, severe emphysema, and heart failure. CONCLUSIONS: When applied in the appropriate patient population, lung POCUS is an inexpensive and reliable tool for rapid screening and diagnosis of SARS-CoV-2 in symptomatic patients with influenza-like illness. Adoption of lung POCUS screening for SARS-CoV-2 may identify patients who do not require additional testing and reduce the need for RT-PCR testing in resource-limited environments and during surge periods.

19.
Ann Intern Med ; 174(1): 33-41, 2021 01.
Article in English | MEDLINE | ID: covidwho-1067966

ABSTRACT

BACKGROUND: Risk factors for progression of coronavirus disease 2019 (COVID-19) to severe disease or death are underexplored in U.S. cohorts. OBJECTIVE: To determine the factors on hospital admission that are predictive of severe disease or death from COVID-19. DESIGN: Retrospective cohort analysis. SETTING: Five hospitals in the Maryland and Washington, DC, area. PATIENTS: 832 consecutive COVID-19 admissions from 4 March to 24 April 2020, with follow-up through 27 June 2020. MEASUREMENTS: Patient trajectories and outcomes, categorized by using the World Health Organization COVID-19 disease severity scale. Primary outcomes were death and a composite of severe disease or death. RESULTS: Median patient age was 64 years (range, 1 to 108 years); 47% were women, 40% were Black, 16% were Latinx, and 21% were nursing home residents. Among all patients, 131 (16%) died and 694 (83%) were discharged (523 [63%] had mild to moderate disease and 171 [20%] had severe disease). Of deaths, 66 (50%) were nursing home residents. Of 787 patients admitted with mild to moderate disease, 302 (38%) progressed to severe disease or death: 181 (60%) by day 2 and 238 (79%) by day 4. Patients had markedly different probabilities of disease progression on the basis of age, nursing home residence, comorbid conditions, obesity, respiratory symptoms, respiratory rate, fever, absolute lymphocyte count, hypoalbuminemia, troponin level, and C-reactive protein level and the interactions among these factors. Using only factors present on admission, a model to predict in-hospital disease progression had an area under the curve of 0.85, 0.79, and 0.79 at days 2, 4, and 7, respectively. LIMITATION: The study was done in a single health care system. CONCLUSION: A combination of demographic and clinical variables is strongly associated with severe COVID-19 disease or death and their early onset. The COVID-19 Inpatient Risk Calculator (CIRC), using factors present on admission, can inform clinical and resource allocation decisions. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Male , Middle Aged , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States/epidemiology
20.
Open Forum Infect Dis ; 8(1): ofaa598, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1062879

ABSTRACT

Background: There is currently no single treatment that mitigates all harms caused by severe acute respiratory syndrome coronavirus 2 infection. Tocilizumab, an interleukin-6 antagonist, may have a role as an adjunctive immune-modulating therapy. Methods: This was an observational retrospective study of hospitalized adult patients with confirmed coronavirus disease 2019 (COVID-19). The intervention group comprised patients who received tocilizumab; the comparator arm was drawn from patients who did not receive tocilizumab. The primary outcome was all-cause mortality censored at 28 days; secondary outcomes were all-cause mortality at discharge, time to clinical improvement, and rates of secondary infections. Marginal structural Cox models via inverse probability treatment weights were applied to estimate the effect of tocilizumab. A time-dependent propensity score-matching method was used to generate a 1:1 match for tocilizumab recipients; infectious diseases experts then manually reviewed these matched charts to identify secondary infections. Results: This analysis included 90 tocilizumab recipients and 1669 controls. Under the marginal structural Cox model, tocilizumab was associated with a 62% reduced hazard of death (adjusted hazard ratio [aHR], 0.38; 95% CI, 0.21 to 0.70) and no change in time to clinical improvement (aHR, 1.13; 95% CI, 0.68 to 1.87). The 1:1 matched data set also showed a lower mortality rate (27.8% vs 34.4%) and reduced hazards of death (aHR, 0.47; 95% CI, 0.25 to 0.88). Elevated inflammatory markers were associated with reduced hazards of death among tocilizumab recipients compared with controls. Secondary infection rates were similar between the 2 groups. Conclusions: Tocilizumab may provide benefit in a subgroup of patients hospitalized with COVID-19 who have elevated biomarkers of hyperinflammation, without increasing the risk of secondary infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...