Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLoS One ; 18(2): e0281365, 2023.
Article in English | MEDLINE | ID: covidwho-2244661

ABSTRACT

BACKGROUND: As diagnostic tests for COVID-19 were broadly deployed under Emergency Use Authorization, there emerged a need to understand the real-world utilization and performance of serological testing across the United States. METHODS: Six health systems contributed electronic health records and/or claims data, jointly developed a master protocol, and used it to execute the analysis in parallel. We used descriptive statistics to examine demographic, clinical, and geographic characteristics of serology testing among patients with RNA positive for SARS-CoV-2. RESULTS: Across datasets, we observed 930,669 individuals with positive RNA for SARS-CoV-2. Of these, 35,806 (4%) were serotested within 90 days; 15% of which occurred <14 days from the RNA positive test. The proportion of people with a history of cardiovascular disease, obesity, chronic lung, or kidney disease; or presenting with shortness of breath or pneumonia appeared higher among those serotested compared to those who were not. Even in a population of people with active infection, race/ethnicity data were largely missing (>30%) in some datasets-limiting our ability to examine differences in serological testing by race. In datasets where race/ethnicity information was available, we observed a greater distribution of White individuals among those serotested; however, the time between RNA and serology tests appeared shorter in Black compared to White individuals. Test manufacturer data was available in half of the datasets contributing to the analysis. CONCLUSION: Our results inform the underlying context of serotesting during the first year of the COVID-19 pandemic and differences observed between claims and EHR data sources-a critical first step to understanding the real-world accuracy of serological tests. Incomplete reporting of race/ethnicity data and a limited ability to link test manufacturer data, lab results, and clinical data challenge the ability to assess the real-world performance of SARS-CoV-2 tests in different contexts and the overall U.S. response to current and future disease pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , United States/epidemiology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , RNA , Pandemics , COVID-19 Testing
2.
PLoS One ; 18(2): e0279956, 2023.
Article in English | MEDLINE | ID: covidwho-2234943

ABSTRACT

BACKGROUND: Real-world performance of COVID-19 diagnostic tests under Emergency Use Authorization (EUA) must be assessed. We describe overall trends in the performance of serology tests in the context of real-world implementation. METHODS: Six health systems estimated the odds of seropositivity and positive percent agreement (PPA) of serology test among people with confirmed SARS-CoV-2 infection by molecular test. In each dataset, we present the odds ratio and PPA, overall and by key clinical, demographic, and practice parameters. RESULTS: A total of 15,615 people were observed to have at least one serology test 14-90 days after a positive molecular test for SARS-CoV-2. We observed higher PPA in Hispanic (PPA range: 79-96%) compared to non-Hispanic (60-89%) patients; in those presenting with at least one COVID-19 related symptom (69-93%) as compared to no such symptoms (63-91%); and in inpatient (70-97%) and emergency department (93-99%) compared to outpatient (63-92%) settings across datasets. PPA was highest in those with diabetes (75-94%) and kidney disease (83-95%); and lowest in those with auto-immune conditions or who are immunocompromised (56-93%). The odds ratios (OR) for seropositivity were higher in Hispanics compared to non-Hispanics (OR range: 2.59-3.86), patients with diabetes (1.49-1.56), and obesity (1.63-2.23); and lower in those with immunocompromised or autoimmune conditions (0.25-0.70), as compared to those without those comorbidities. In a subset of three datasets with robust information on serology test name, seven tests were used, two of which were used in multiple settings and met the EUA requirement of PPA ≥87%. Tests performed similarly across datasets. CONCLUSION: Although the EUA requirement was not consistently met, more investigation is needed to understand how serology and molecular tests are used, including indication and protocol fidelity. Improved data interoperability of test and clinical/demographic data are needed to enable rapid assessment of the real-world performance of in vitro diagnostic tests.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , United States/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Clinical Laboratory Techniques/methods , Serologic Tests
3.
PLoS One ; 17(12): e0278394, 2022.
Article in English | MEDLINE | ID: covidwho-2140704

ABSTRACT

BACKGROUND: While Covid-19 monoclonal antibody therapies (Mab) have been available in the outpatient setting for over a year and a half, little is known about the impact of emerging variants and vaccinations on the effectiveness of Mab therapies. We sought to determine the effectiveness of Covid-19 Mab therapies during the first two waves of the pandemic in Los Angeles County and assess the impact of vaccines, variants, and other confounding factors. METHODS AND FINDINGS: We retrospectively examined records for 2209 patients of with confirmed positive molecular SARS-CoV2 test either referred for outpatient Mab therapy or receiving Mab treatment in the emergency department (ED) between December 2020 and 2021. Our primary outcome was the combined 30-day incidence of ED visit, hospitalization, or death following the date of referral. Additionally, SARS-CoV2 isolates of hospitalized patients receiving Mabs were sequenced. The primary outcome was significantly reduced with combination therapy compared to bamlanivimab or no treatment (aHR 0·60; 95% CI ·37, ·99), with greater benefit in unvaccinated, moderate-to-high-risk patients (aHR ·39; 95% CI ·20, ·77). Significant associations with the primary outcome included history of lung disease (HR 7·13; 95% CI 5·12, 9·95), immunocompromised state (HR 6·59; 95% CI 2·91-14·94), and high social vulnerability (HR 2·29, 95% CI 1·56-3·36). Two predominant variants were noted during the period of observation: the Epsilon variant and the Delta variant. CONCLUSIONS: Only select monoclonal antibody therapies significantly reduced ED visits, hospitalizations, and death due to COVID-19 during. Vaccination diminished effectiveness of Mabs. Variant data and vaccination status should be considered when assessing the benefit of novel COVID-19 treatments.


Subject(s)
COVID-19 , Vaccines , Humans , Pandemics , COVID-19/epidemiology , RNA, Viral , Retrospective Studies , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use
4.
Nature ; 611(7936): 570-577, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106425

ABSTRACT

Expanding our global testing capacity is critical to preventing and containing pandemics1-9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10-14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15-20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21-29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents ('ferrobots') for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10-300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future.


Subject(s)
Automation , COVID-19 Testing , Magnets , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Robotics , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing/methods , Molecular Diagnostic Techniques/economics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/methods , Pandemics/prevention & control , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Algorithms , Automation/economics , Automation/methods , Robotics/methods , Indicators and Reagents/economics
5.
Infect Control Hosp Epidemiol ; : 1-9, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2008228

ABSTRACT

BACKGROUND: Candida auris is an emerging fungal pathogen causing outbreaks in healthcare facilities. Five distinctive genomic clades exhibit clade-unique characteristics, highlighting the importance of real-time genomic surveillance and incorporating genotypic information to inform infection prevention practices and treatment algorithms. METHODS: Both active and passive surveillance were used to screen hospitalized patients. C. auris polymerase chain reaction (PCR) assay on inguinal-axillary swabs was performed on high-risk patients upon admission. All clinical yeast isolates were identified to the species level. C. auris isolates were characterized by both phenotypic antifungal susceptibility tests and whole-genome sequencing. RESULTS: From late 2019 to early 2022, we identified 45 patients with C. auris. Most had a tracheostomy or were from a facility with a known outbreak. Moreover, 7 patients (15%) were only identified through passive surveillance. Also, 8 (18%) of the patients had a history of severe COVID-19. The overall mortality was 18%. Invasive C. auris infections were identified in 13 patients (29%), 9 (69%) of whom had bloodstream infections. Patients with invasive infection were more likely to have a central line. All C. auris isolates were resistant to fluconazole but susceptible to echinocandins. Genomic analysis showed that 1 dominant clade-III lineage is circulating in Los Angeles, with very limited intrahost and interhost genetic diversity. CONCLUSIONS: We have demonstrated that a robust C. auris surveillance program can be established using both active and passive surveillance, with multidisciplinary efforts involving the microbiology laboratory and the hospital epidemiology team. In Los Angeles County, C. auris strains are highly related and echinocandins should be used for empiric therapy.

7.
J Mol Diagn ; 23(2): 159-163, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065363

ABSTRACT

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the approval of numerous molecular diagnostic assays with various performance and technical capacities. There are limited data comparing performance among assays. We conducted a retrospective analysis of >10,000 test results among three widely used RT-PCR assays for coronavirus disease 2019 (CDC, Simplexa Direct, and TaqPath) to assess performance characteristics. We also retested remnant weakly positive specimens to assess analytical sensitivity. All assays had strong linear correlation and little bias among CT values for PCR targets. In patients with first-test negative results (n = 811), most (795, 98.0%) remained negative for all subsequent testing. Retesting of weakly positive specimens (CT > 30) showed sensitivities as follows: TaqPath (97.8%), CDC (91%), Simplexa (75.3%). Our analysis showed no performance difference among PCR targets within the same assay, suggesting a single target is sufficient for SARS-CoV-2 detection. Lower respiratory tract specimens had a higher negative predictive value (100%) than upper respiratory tract specimens (98%), highlighting the utility of testing lower respiratory tract specimens when clinically indicated. Negative predictive value did not increase on further repeated testing, providing strong evidence for discouraging unnecessary repeated testing for SARS-CoV-2.


Subject(s)
Biological Assay , COVID-19 Testing , COVID-19/diagnosis , COVID-19/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , Predictive Value of Tests
8.
Diagn Microbiol Infect Dis ; 99(3): 115257, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1065002

ABSTRACT

COVID-19 greatly disrupted the global supply chain of nasopharyngeal swabs, and thus new products have come to market with little data to support their use. In this prospective study, 2 new 3D printed nasopharyngeal swab designs were evaluated against the standard, flocked nasopharyngeal swab for the diagnosis of COVID-19. Seventy adult patients (37 COVID-positive and 33 COVID-negative) underwent consecutive diagnostic reverse transcription polymerase chain reaction testing, with a flocked swab followed by one or two 3D printed swabs. The "Lattice Swab" (manufacturer Resolution Medical) demonstrated 93.3% sensitivity (95% CI, 77.9%-99.2%) and 96.8% specificity (83.3%-99.9%), yielding κ = 0.90 (0.85-0.96). The "Origin KXG" (manufacturer Origin Laboratories) demonstrated 83.9% sensitivity (66.3%-94.6%) and 100% specificity (88.8%-100.0%), yielding κ = 0.84 (0.77-0.91). Both 3D printed nasopharyngeal swab results have high concordance with the control swab results. The decision to use 3D printed nasopharyngeal swabs during the COVID-19 pandemic should be strongly considered by clinical and research laboratories.


Subject(s)
COVID-19 Testing/instrumentation , COVID-19/diagnosis , Nasopharynx/virology , Printing, Three-Dimensional/instrumentation , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Female , Humans , Male , Middle Aged , Specimen Handling/methods , Young Adult
9.
J Mol Diagn ; 23(2): 159-163, 2021 02.
Article in English | MEDLINE | ID: covidwho-1026220

ABSTRACT

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the approval of numerous molecular diagnostic assays with various performance and technical capacities. There are limited data comparing performance among assays. We conducted a retrospective analysis of >10,000 test results among three widely used RT-PCR assays for coronavirus disease 2019 (CDC, Simplexa Direct, and TaqPath) to assess performance characteristics. We also retested remnant weakly positive specimens to assess analytical sensitivity. All assays had strong linear correlation and little bias among CT values for PCR targets. In patients with first-test negative results (n = 811), most (795, 98.0%) remained negative for all subsequent testing. Retesting of weakly positive specimens (CT > 30) showed sensitivities as follows: TaqPath (97.8%), CDC (91%), Simplexa (75.3%). Our analysis showed no performance difference among PCR targets within the same assay, suggesting a single target is sufficient for SARS-CoV-2 detection. Lower respiratory tract specimens had a higher negative predictive value (100%) than upper respiratory tract specimens (98%), highlighting the utility of testing lower respiratory tract specimens when clinically indicated. Negative predictive value did not increase on further repeated testing, providing strong evidence for discouraging unnecessary repeated testing for SARS-CoV-2.


Subject(s)
Biological Assay , COVID-19 Testing , COVID-19/diagnosis , COVID-19/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , Predictive Value of Tests
10.
Am J Clin Pathol ; 155(3): 376-380, 2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-960471

ABSTRACT

OBJECTIVES: The inconclusive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) result causes confusion and delay for infection prevention precautions and patient management. We aimed to develop a quantitative algorithm to assess and interpret these inconclusive results. METHODS: We created a score-based algorithm by combining laboratory, clinical, and epidemiologic data to evaluate 69 cases with inconclusive coronavirus disease 2019 (COVID-19) PCR results from the Centers for Disease Control and Prevention (CDC) assay (18 cases) and the TaqPath assay (51 cases). RESULTS: We determined 5 (28%) of 18 (CDC assay) and 20 (39%) of 51 (TaqPath assay) cases to be false positive. Lowering the cycle threshold cutoff from 40 to 37 in the TaqPath assay resulted in a dramatic reduction of the false-positive rate to 14%. We also showed testing of asymptomatic individuals is associated with a significantly higher probability of having a false-positive result. CONCLUSIONS: A substantial percentage of inconclusive SARS-CoV-2 PCR results can be false positive, especially among asymptomatic patients. The quantitative algorithm we created was shown to be effective and could provide a useful tool for clinicians and hospital epidemiologists to interpret inconclusive COVID-19 PCR results and provide clinical guidance when additional PCR or antibody test results are available.


Subject(s)
Algorithms , Antigens, Viral/analysis , COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Carrier State , False Positive Reactions , Humans , SARS-CoV-2
11.
Surgery ; 168(6): 980-986, 2020 12.
Article in English | MEDLINE | ID: covidwho-714255

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has resulted in reduced performance of elective surgeries and procedures at medical centers across the United States. Awareness of the prevalence of asymptomatic disease is critical for guiding safe approaches to operative/procedural services. As COVID-19 polymerase chain reaction (PCR) testing has been limited largely to symptomatic patients, health care workers, or to those in communal care centers, data regarding asymptomatic viral disease carriage are limited. METHODS: In this retrospective observational case series evaluating UCLA Health patients enrolled in pre-operative/pre-procedure protocol COVID-19 reverse transcriptase (RT)-PCR testing between April 7, 2020 and May 21, 2020, we determine the prevalence of COVID-19 infection in asymptomatic patients scheduled for surgeries and procedures. RESULTS: Primary outcomes include the prevalence of COVID-19 infection in this asymptomatic population. Secondary data analysis includes overall population testing results and population demographics. Eighteen of 4,751 (0.38%) patients scheduled for upcoming surgeries and high-risk procedures had abnormal (positive/inconclusive) COVID-19 RT-PCR testing results. Six of 18 patients were confirmed asymptomatic and had positive test results. Four of 18 were confirmed asymptomtic and had inconclusive results. Eight of 18 had positive results in the setting of recent symptoms or known COVID-19 infection. The prevalence of asymptomatic COVID-19 infection was 0.13%. More than 90% of patients had residential addresses within a 67-mile geographic radius of our medical center, the median age was 58, and there was equal male/female distribution. CONCLUSION: These data demonstrating low levels (0.13% prevalence) of COVID-19 infection in an asymptomatic population of patients undergoing scheduled surgeries/procedures in a large urban area have helped to inform perioperative protocols during the COVID-19 pandemic. Testing protocols like ours may prove valuable for other health systems in their approaches to safe procedural practices during COVID-19.


Subject(s)
Academic Medical Centers/statistics & numerical data , Asymptomatic Diseases/epidemiology , COVID-19/epidemiology , Elective Surgical Procedures , Pandemics , Perioperative Care/statistics & numerical data , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged , Prevalence , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL