Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Epidemics ; 41: 100637, 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2061128

ABSTRACT

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and infections can still go undetected as people may not remember all their contacts or contacts may not be traced successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, which could be a potential area of improvement for a disease response. In this paper, we present a method for estimating the proportion of infections that are not detected during an outbreak. Our method uses next generation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method using simulated data from an individual-based model and then investigate two case studies: the proportion of undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand during 2020 (95% credible interval: 0.243 - 16.0%) if 80% of contacts were under active surveillance but depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 - 87.0% or 1.70 - 80.9%).

2.
BMC Infect Dis ; 22(1): 493, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865282

ABSTRACT

BACKGROUND: Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. METHODS: We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. RESULTS: The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ± 2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95% CrI: 1.6, 3.3) nationally. In the final week of the trusted period (16-23 March 2020), Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6), respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age with individuals more likely to infect, and be infected by, contacts in a similar age group to them. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients < 20 years old developing pneumonia or severe respiratory symptoms. CONCLUSIONS: Information collected in the early phases of an outbreak are important in characterising any novel pathogen. The availability of timely and detailed data and appropriate analyses is critical to estimate and understand a pathogen's transmissibility, high-risk settings for transmission, and key symptoms. These insights can help to inform urgent response strategies.


Subject(s)
COVID-19 , Adult , Bayes Theorem , COVID-19/epidemiology , Humans , Japan/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Young Adult
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331212

ABSTRACT

Background Evidence to date has shown that inequality in health, and vaccine coverage in particular, can have ramifications to wider society. However, whilst individual studies have sought to characterise these heterogeneities in immunisation coverage at national level, few have taken a broad and quantitative view of the contributing factors to heterogeneity in vaccine coverage and impact. This systematic review aims to highlight these geographic, demographic, and sociodemographic characteristics through a qualitative and quantitative approach, vital to prioritise and optimise vaccination policies. Methods A systematic review of two databases (PubMed and Web of Science) was undertaken using Medical Subject Headings (MeSH) and keywords to identify studies examining factors on vaccine inequality and heterogeneity in vaccine coverage. Inclusion criteria were applied independently by two researchers. Studies including data on key characteristics of interest were further analysed through a meta-analysis to produce a pooled estimate of the risk ratio using a random effects model for that characteristic. Results One hundred and eight studies were included in this review. We found that inequalities in wealth, education, and geographic access can affect vaccine impact and vaccine dropout. We estimated those living in rural areas were not significantly different in terms of full vaccination status compared to urban areas but noted considerable heterogeneity between countries. We found that females were 3% (95%CI[1%, 5%]) less likely to be fully vaccinated than males. Additionally, we estimated that children whose mothers had no formal education were 28% (95%CI[18%,47%]) less likely to be fully vaccinated than those whose mother had primary level, or above, education. Finally, we found that individuals in the poorest wealth quintile were 27% (95%CI [16%,37%]) less likely to be fully vaccinated than those in the richest. Conclusions We found a nuanced picture of inequality in vaccine coverage and access with wealth disparity dominating, and likely driving, other disparities. This review highlights the complex landscape of inequity and further need to design vaccination strategies targeting missed subgroups to improve and recover vaccination coverage following the COVID-19 pandemic. Registration Prospero CRD42021261927

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-312959

ABSTRACT

Background: The multiple efficacious vaccines authorised for emergency use worldwide represent the first preventative intervention against coronavirus disease 2019 (COVID-19) that does not rely on social distancing measures. The speed at which data are emerging and the heterogeneities in study design, target populations, and implementation make it challenging to interpret and assess the likely impact of vaccine campaigns on local epidemics. We reviewed available vaccine efficacy and effectiveness studies to generate working estimates that can be used to parameterise simulation studies of vaccine impact. Methods: We searched MEDLINE, the World Health Organization’s Institutional Repository for Information Sharing, medRxiv, and vaccine manufacturer websites for studies that evaluated the emerging data on COVID-19 vaccine efficacy and effectiveness. Studies providing an estimate of the efficacy or effectiveness of a COVID-19 vaccine using disaggregated data against SARS-CoV-2 infection, symptomatic disease, severe disease, death, or transmission were included. We extracted information on study population, variants of concern (VOC), vaccine platform, dose schedule, study endpoints, and measures of impact. We applied an evidence synthesis approach to capture a range of plausible and consistent parameters for vaccine efficacy and effectiveness that can be used to inform and explore a variety of vaccination strategies as the COVID-19 pandemic evolves. Results: Of the 602 articles and reports identified, 53 were included in the analysis. The availability of vaccine efficacy and effectiveness estimates varied by vaccine and were limited for VOCs. Estimates for non-primary endpoints such as effectiveness against infection and onward transmission were sparse. Synthesised estimates were relatively consistent for the same vaccine platform for wild-type, but was more variable for VOCs. Conclusions: : Assessment of efficacy and effectiveness of COVID-19 vaccines is complex. Simulation studies must acknowledge and capture the uncertainty in vaccine effectiveness to robustly explore and inform vaccination policies and policy around the lifting of non-pharmaceutical interventions.

5.
Lancet ; 398(10313): 1825-1835, 2021 11 13.
Article in English | MEDLINE | ID: covidwho-1492790

ABSTRACT

BACKGROUND: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories. METHODS: This mathematical modelling study was done to assess the UK Government's four-step process to easing lockdown restrictions in England, UK. We extended a previously described model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the delta variant. We calibrated the model to English surveillance data, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. We estimated the resulting number of daily infections and hospital admissions, and daily and cumulative deaths. Three scenarios spanning a range of optimistic to pessimistic vaccine effectiveness, waning natural immunity, and cross-protection from previous infections were investigated. We also considered three levels of mixing after the lifting of restrictions. FINDINGS: The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination. However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69-83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500-5700) peak daily hospital admissions under our central parameter scenario. Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700-1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness. INTERPRETATION: Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, and UK Foreign, Commonwealth and Development Office.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control/organization & administration , SARS-CoV-2 , Vaccination Coverage/organization & administration , COVID-19/epidemiology , COVID-19/mortality , England/epidemiology , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Humans , Models, Theoretical , Patient Admission/statistics & numerical data
8.
Sci Rep ; 11(1): 16342, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354114

ABSTRACT

The UK and Sweden have among the worst per-capita COVID-19 mortality in Europe. Sweden stands out for its greater reliance on voluntary, rather than mandatory, control measures. We explore how the timing and effectiveness of control measures in the UK, Sweden and Denmark shaped COVID-19 mortality in each country, using a counterfactual assessment: what would the impact have been, had each country adopted the others' policies? Using a Bayesian semi-mechanistic model without prior assumptions on the mechanism or effectiveness of interventions, we estimate the time-varying reproduction number for the UK, Sweden and Denmark from daily mortality data. We use two approaches to evaluate counterfactuals which transpose the transmission profile from one country onto another, in each country's first wave from 13th March (when stringent interventions began) until 1st July 2020. UK mortality would have approximately doubled had Swedish policy been adopted, while Swedish mortality would have more than halved had Sweden adopted UK or Danish strategies. Danish policies were most effective, although differences between the UK and Denmark were significant for one counterfactual approach only. Our analysis shows that small changes in the timing or effectiveness of interventions have disproportionately large effects on total mortality within a rapidly growing epidemic.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Health Policy , Models, Theoretical , COVID-19/therapy , Denmark/epidemiology , Humans , Sweden/epidemiology , United Kingdom/epidemiology
9.
Sci Rep ; 11(1): 13903, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1298849

ABSTRACT

SARS-CoV-2 infections have been reported in all age groups including infants, children, and adolescents. However, the role of children in the COVID-19 pandemic is still uncertain. This systematic review of early studies synthesises evidence on the susceptibility of children to SARS-CoV-2 infection, the severity and clinical outcomes in children with SARS-CoV-2 infection, and the transmissibility of SARS-CoV-2 by children in the initial phases of the COVID-19 pandemic. A systematic literature review was conducted in PubMed. Reviewers extracted data from relevant, peer-reviewed studies published up to July 4th 2020 during the first wave of the SARS-CoV-2 outbreak using a standardised form and assessed quality using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. For studies included in the meta-analysis, we used a random effects model to calculate pooled estimates of the proportion of children considered asymptomatic or in a severe or critical state. We identified 2775 potential studies of which 128 studies met our inclusion criteria; data were extracted from 99, which were then quality assessed. Finally, 29 studies were considered for the meta-analysis that included information of symptoms and/or severity, these were further assessed based on patient recruitment. Our pooled estimate of the proportion of test positive children who were asymptomatic was 21.1% (95% CI: 14.0-28.1%), based on 13 included studies, and the proportion of children with severe or critical symptoms was 3.8% (95% CI: 1.5-6.0%), based on 14 included studies. We did not identify any studies designed to assess transmissibility in children and found that susceptibility to infection in children was highly variable across studies. Children's susceptibility to infection and onward transmissibility relative to adults is still unclear and varied widely between studies. However, it is evident that most children experience clinically mild disease or remain asymptomatically infected. More comprehensive contact-tracing studies combined with serosurveys are needed to quantify children's transmissibility relative to adults. With children back in schools, testing regimes and study protocols that will allow us to better understand the role of children in this pandemic are critical.


Subject(s)
Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , Disease Susceptibility , SARS-CoV-2/pathogenicity , Adolescent , Adult , Child , Cohort Studies , Cross-Sectional Studies , False Negative Reactions , False Positive Reactions , Humans
10.
Sci Transl Med ; 13(602)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1280393

ABSTRACT

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modeling framework, allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rt eff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 [95% credible interval (CrI): 15,900 to 38,400]. The infection fatality ratio decreased from 1.00% (95% CrI: 0.85 to 1.21%) to 0.79% (95% CrI: 0.63 to 0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% CrI: 14.7 to 35.2%) than those residing in the community (7.9%, 95% CrI: 5.9 to 10.3%). On 2 December 2020, England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95% CrI: 5.4 to 10.2%) and 22.3% (95% CrI: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be lifted without a resurgence of transmission.


Subject(s)
COVID-19 , Epidemics , Aged , Communicable Disease Control , England/epidemiology , Humans , SARS-CoV-2
11.
Lancet ; 397(10291): 2251, 2021 06 12.
Article in English | MEDLINE | ID: covidwho-1262969

Subject(s)
Vaccines , Child , Humans
12.
Vaccine ; 39(22): 2995-3006, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1174521

ABSTRACT

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extend a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identify optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We find that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for < 20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.


Subject(s)
COVID-19 , Vaccines , Aged , COVID-19 Vaccines , Humans , Models, Theoretical , Public Health , SARS-CoV-2 , Vaccination
13.
PLoS Med ; 18(2): e1003523, 2021 02.
Article in English | MEDLINE | ID: covidwho-1090577

ABSTRACT

BACKGROUND: The Eliminate Yellow fever Epidemics (EYE) strategy was launched in 2017 in response to the resurgence of yellow fever in Africa and the Americas. The strategy relies on several vaccination activities, including preventive mass vaccination campaigns (PMVCs). However, to what extent PMVCs are associated with a decreased risk of outbreak has not yet been quantified. METHODS AND FINDINGS: We used the self-controlled case series (SCCS) method to assess the association between the occurrence of yellow fever outbreaks and the implementation of PMVCs at the province level in the African endemic region. As all time-invariant confounders are implicitly controlled for in the SCCS method, this method is an alternative to classical cohort or case-control study designs when the risk of residual confounding is high, in particular confounding by indication. The locations and dates of outbreaks were identified from international epidemiological records, and information on PMVCs was provided by coordinators of vaccination activities and international funders. The study sample consisted of provinces that were both affected by an outbreak and targeted for a PMVC between 2005 and 2018. We compared the incidence of outbreaks before and after the implementation of a PMVC. The sensitivity of our estimates to a range of assumptions was explored, and the results of the SCCS method were compared to those obtained through a retrospective cohort study design. We further derived the number of yellow fever outbreaks that have been prevented by PMVCs. The study sample consisted of 33 provinces from 11 African countries. Among these, the first outbreak occurred during the pre-PMVC period in 26 (79%) provinces, and during the post-PMVC period in 7 (21%) provinces. At the province level, the post-PMVC period was associated with an 86% reduction (95% CI 66% to 94%, p < 0.001) in the risk of outbreak as compared to the pre-PMVC period. This negative association between exposure to PMVCs and outbreak was robustly observed across a range of sensitivity analyses, especially when using quantitative estimates of vaccination coverage as an alternative exposure measure, or when varying the observation period. In contrast, the results of the cohort-style analyses were highly sensitive to the choice of covariates included in the model. Based on the SCCS results, we estimated that PMVCs were associated with a 34% (95% CI 22% to 45%) reduction in the number of outbreaks in Africa from 2005 to 2018. A limitation of our study is the fact that it does not account for potential time-varying confounders, such as changing environmental drivers of yellow fever and possibly improved disease surveillance. CONCLUSIONS: In this study, we provide new empirical evidence of the high preventive impact of PMVCs on yellow fever outbreaks. This study illustrates that the SCCS method can be advantageously applied at the population level in order to evaluate a public health intervention.


Subject(s)
Disease Outbreaks/prevention & control , Vaccination Coverage/statistics & numerical data , Yellow Fever/epidemiology , Yellow Fever/prevention & control , Americas , Case-Control Studies , Humans , Immunization Programs/methods , Incidence
14.
Nat Commun ; 12(1): 1090, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087445

ABSTRACT

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts. Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world. Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation. In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , Algorithms , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/statistics & numerical data , Global Health , Humans , Models, Theoretical , Physical Distancing , Quarantine/methods , SARS-CoV-2/physiology
15.
Wellcome Open Res ; 5: 59, 2020.
Article in English | MEDLINE | ID: covidwho-1068024

ABSTRACT

Background: Several non-pharmaceutical interventions (NPIs) have been implemented across the world to control the coronavirus disease (COVID-19) pandemic. Social distancing (SD) interventions applied so far have included school closures, remote working and quarantine. These measures have been shown to have large impacts on pandemic influenza transmission. However, there has been comparatively little examination of such measures for COVID-19. Methods: We examined the existing literature, and collated data, on implementation of NPIs to examine their effects on the COVID-19 pandemic so far. Data on NPIs were collected from official government websites as well as from media sources. Results: Measures such as travel restrictions have been implemented in multiple countries and appears to have slowed the geographic spread of COVID-19 and reduced initial case numbers. We find that, due to the relatively sparse information on the differences with and without interventions, it is difficult to quantitatively assess the efficacy of many interventions. Similarly, whilst the comparison to other pandemic diseases such as influenza can be helpful, there are key differences that could affect the efficacy of similar NPIs. Conclusions: The timely implementation of control measures is key to their success and must strike a balance between early enough application to reduce the peak of the epidemic and ensuring that they can be feasibly maintained for an appropriate duration. Such measures can have large societal impacts and they need to be appropriately justified to the population. As the pandemic of COVID-19 progresses, quantifying the impact of interventions will be a vital consideration for the appropriate use of mitigation strategies.

16.
J Travel Med ; 27(8)2020 12 23.
Article in English | MEDLINE | ID: covidwho-1059308
17.
Int J Infect Dis ; 102: 463-471, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966658

ABSTRACT

OBJECTIVES: In this data collation study, we aimed to provide a comprehensive database describing the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19) throughout the main provinces in China. METHODS: From mid-January to March 2020, we extracted publicly available data regarding the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted descriptive analyses of the epidemic in the six most-affected provinces. RESULTS: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends differed among provinces. Compared with Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as the local transmission of COVID-19 declined, switching the focus of measures to the testing and quarantine of inbound travellers may have helped to sustain the control of the epidemic. CONCLUSIONS: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database containing these indicators and information regarding control measures is a useful resource for further research and policy planning in response to the COVID-19 epidemic.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Databases, Factual , Humans
18.
Nat Commun ; 11(1): 6189, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-960314

ABSTRACT

As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.


Subject(s)
COVID-19/epidemiology , Pandemics/statistics & numerical data , Bayes Theorem , COVID-19/transmission , Humans , Models, Statistical , United States/epidemiology , Virus Diseases/epidemiology
19.
BMC Med ; 18(1): 321, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-840743

ABSTRACT

BACKGROUND: After experiencing a sharp growth in COVID-19 cases early in the pandemic, South Korea rapidly controlled transmission while implementing less stringent national social distancing measures than countries in Europe and the USA. This has led to substantial interest in their "test, trace, isolate" strategy. However, it is important to understand the epidemiological peculiarities of South Korea's outbreak and characterise their response before attempting to emulate these measures elsewhere. METHODS: We systematically extracted numbers of suspected cases tested, PCR-confirmed cases, deaths, isolated confirmed cases, and numbers of confirmed cases with an identified epidemiological link from publicly available data. We estimated the time-varying reproduction number, Rt, using an established Bayesian framework, and reviewed the package of interventions implemented by South Korea using our extracted data, plus published literature and government sources. RESULTS: We estimated that after the initial rapid growth in cases, Rt dropped below one in early April before increasing to a maximum of 1.94 (95%CrI, 1.64-2.27) in May following outbreaks in Seoul Metropolitan Region. By mid-June, Rt was back below one where it remained until the end of our study (July 13th). Despite less stringent "lockdown" measures, strong social distancing measures were implemented in high-incidence areas and studies measured a considerable national decrease in movement in late February. Testing the capacity was swiftly increased, and protocols were in place to isolate suspected and confirmed cases quickly; however, we could not estimate the delay to isolation using our data. Accounting for just 10% of cases, individual case-based contact tracing picked up a relatively minor proportion of total cases, with cluster investigations accounting for 66%. CONCLUSIONS: Whilst early adoption of testing and contact tracing is likely to be important for South Korea's successful outbreak control, other factors including regional implementation of strong social distancing measures likely also contributed. The high volume of testing and the low number of deaths suggest that South Korea experienced a small epidemic relative to other countries. Caution is needed in attempting to replicate the South Korean response in populations with larger more geographically widespread epidemics where finding, testing, and isolating cases that are linked to clusters may be more difficult.


Subject(s)
Betacoronavirus , Contact Tracing/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Bayes Theorem , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Contact Tracing/trends , Coronavirus Infections/diagnosis , Disease Outbreaks/prevention & control , Humans , Pneumonia, Viral/diagnosis , Quarantine/trends , Republic of Korea/epidemiology , SARS-CoV-2
20.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Article in English | MEDLINE | ID: covidwho-641159

ABSTRACT

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Subject(s)
Coronavirus Infections/epidemiology , Developing Countries , HIV Infections/prevention & control , Health Services Accessibility , Malaria/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis/prevention & control , COVID-19 , HIV Infections/epidemiology , HIV Infections/mortality , Humans , Malaria/epidemiology , Malaria/mortality , Models, Theoretical , Tuberculosis/epidemiology , Tuberculosis/mortality
SELECTION OF CITATIONS
SEARCH DETAIL