Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Eur J Med Chem ; 228: 114030, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1768048

ABSTRACT

The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 µM and 1.81 ± 0.17 µM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery/methods , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gastrointestinal Tract/metabolism , Humans , Kinetics , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315661

ABSTRACT

Background: Qingfei Paidu decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. This study aims to identify the main constituents in QFPDD and the absorbed components (including prototypes and metabolites) in serum and tissues after oral administration of QFPDD to mice. Methods: : A practical and sensitive method of UHPLC-Q-Exactive-Orbitrap HRMS was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. Results: : A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. Conclusions: : An UHPLC-Q-Orbitrap HRMS based method was established for chemical profiling the constituents in QFPDD, while the absorbed prototypes and metabolites occurring in mice serum and tissues were investigated following oral administration of QFPDD. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.

3.
Eur J Med Chem ; 228: 114030, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1654355

ABSTRACT

The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 µM and 1.81 ± 0.17 µM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery/methods , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gastrointestinal Tract/metabolism , Humans , Kinetics , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors
4.
Phytomedicine ; 97: 153922, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1586870

ABSTRACT

BACKGROUND: Although Qing-Fei-Pai-Du decoction (QFPDD) is extensively used clinically to treat COVID-19 patients, the mechanism by which it modulates the immunological and metabolic functions of liver tissue remains unknown. PURPOSE: The purpose of this study is to investigate the mechanism of action of QFPDD in the treatment of mice with coronavirus-induced pneumonia by combining integrated hepatic single-cell RNA sequencing and untargeted metabolomics. METHODS: We developed a human coronavirus pneumonia model in BALB/c mice by infecting them with human coronavirus HCoV-229E with stimulating them with cold-damp environment. We initially assessed the status of inflammation and immunity in model mice treated with or without QFPDD by detecting peripheral blood lymphocytes and inflammatory cytokines. Then, single-cell RNA sequencing and untargeted metabolomics were performed on mouse liver tissue. RESULTS: HCoV-229E infection in combination with exposure to a cold-damp environment significantly decreased the percentage of peripheral blood lymphocytes (CD4+ and CD8+ T cells, B cells) in mice, which was enhanced by QFPDD therapy. Meanwhile, the levels of inflammatory cytokines such as IL-6, TNF-α, and IFN-γ were significantly increased in mouse models but significantly decreased by QFPDD treatment. Single-cell RNA sequencing analysis showed that QFPDD could attenuate disease-associated alterations in gene expression, core transcriptional regulatory networks, and cell-type composition. Computational predictions indicated that QFPDD rectified the observed aberrant patterns of cell-cell communication. Additionally, the metabolic profiles of liver tissue in the Model group were distinct from mice in the Control group, and QFPDD significantly regulated hepatic purine metabolism. CONCLUSION: To the best of our knowledge, this study is the first to integrate hepatic single-cell RNA sequencing and untargeted metabolomics into a TCM formula and these valuable findings indicate that QFPDD can improve immune function and reduce liver injury and inflammation.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Metabolomics , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/drug therapy , Drugs, Chinese Herbal/therapeutic use , Humans , Liver , Mice , Mice, Inbred BALB C , Sequence Analysis, RNA , Single-Cell Analysis
5.
Chem Biol Interact ; 351: 109744, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1509623

ABSTRACT

Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Carboxylesterase/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/chemistry , Alanine/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Carboxylesterase/chemistry , Cathepsin A/chemistry , Cathepsin A/metabolism , Humans , Hydrolysis/drug effects , Kinetics , Liver/metabolism , Microsomes, Liver/metabolism , Simvastatin/pharmacology
6.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1474606

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Subject(s)
3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Ampelopsis/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites/drug effects , Cysteine/metabolism , Flavonoids/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding/drug effects , Protein Conformation/drug effects , SARS-CoV-2/drug effects
7.
Front Chem ; 9: 740702, 2021.
Article in English | MEDLINE | ID: covidwho-1468326

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 have caused a worldwide public health crisis. Designing small molecule inhibitors targeting SARS-CoV-2 S-RBD/ACE2 interaction is considered as a potential strategy for the prevention and treatment of SARS-CoV-2. But to date, only a few compounds have been reported as SARS-CoV-2 S-RBD/ACE2 interaction inhibitors. In this study, we described the virtual screening and experimental validation of two novel inhibitors (DC-RA016 and DC-RA052) against SARS-CoV-2 S-RBD/ACE2 interaction. The NanoBiT assays and surface plasmon resonance (SPR) assays demonstrated their capabilities of blocking SARS-CoV-2 S-RBD/ACE2 interaction and directly binding to both S-RBD and ACE2. Moreover, the pseudovirus assay revealed that these two compounds possessed significant antiviral activity (about 50% inhibition rate at maximum non-cytotoxic concentration). These results indicate that the compounds DC-RA016 and DC-RA052 are promising inhibitors against SARS-CoV-2 S-RBD/ACE2 interaction and deserve to be further developed.

8.
FASEB J ; 35(9): e21870, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373669

ABSTRACT

COVID-19 is often characterized by dysregulated inflammatory and immune responses. It has been shown that the Traditional Chinese Medicine formulation Qing-Fei-Pai-Du decoction (QFPDD) is effective in the treatment of the disease, especially for patients in the early stage. Our network pharmacology analyses indicated that many inflammation and immune-related molecules were the targets of the active components of QFPDD, which propelled us to examine the effects of the decoction on inflammation. We found in the present study that QFPDD effectively alleviated dextran sulfate sodium-induced intestinal inflammation in mice. It inhibited the production of pro-inflammatory cytokines IL-6 and TNFα, and promoted the expression of anti-inflammatory cytokine IL-10 by macrophagic cells. Further investigations found that QFPDD and one of its active components wogonoside markedly reduced LPS-stimulated phosphorylation of transcription factor ATF2, an important regulator of multiple cytokines expression. Our data revealed that both QFPDD and wogonoside decreased the half-life of ATF2 and promoted its proteasomal degradation. Of note, QFPDD and wogonoside down-regulated deubiquitinating enzyme USP14 along with inducing ATF2 degradation. Inhibition of USP14 with the small molecular inhibitor IU1 also led to the decrease of ATF2 in the cells, indicating that QFPDD and wogonoside may act through regulating USP14 to promote ATF2 degradation. To further assess the importance of ubiquitination in regulating ATF2, we generated mice that were intestinal-specific KLHL5 deficiency, a CUL3-interacting protein participating in substrate recognition of E3s. In these mice, QFPDD mitigated inflammatory reaction in the spleen, but not intestinal inflammation, suggesting CUL3-KLHL5 may function as an E3 for ATF2 degradation.


Subject(s)
Activating Transcription Factor 2/metabolism , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Glucosides/pharmacology , Inflammation/drug therapy , Proteolysis/drug effects , Ubiquitin Thiolesterase/deficiency , Animals , Cell Line , Colitis/chemically induced , Colitis/drug therapy , Cullin Proteins/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Flavanones/therapeutic use , Glucosides/therapeutic use , Inflammation/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitination
9.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1305238

ABSTRACT

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Vitamin K 3 , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemistry
10.
Acta Pharmacol Sin ; 43(4): 1072-1081, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1285959

ABSTRACT

Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cytochrome P-450 CYP3A Inhibitors , Herb-Drug Interactions , Humans , Microsomes, Liver , Rats
11.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1203068

ABSTRACT

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Vitamin K 3 , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemistry
12.
Fitoterapia ; 152: 104909, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1203052

ABSTRACT

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Coronavirus Protease Inhibitors/pharmacology , Ginkgo biloba/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , COVID-19/drug therapy , Coronavirus Protease Inhibitors/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Humans , Molecular Structure , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , SARS-CoV-2/enzymology , Salicylates/pharmacology , Salicylates/therapeutic use
13.
Chin J Nat Med ; 19(4): 305-320, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1193536

ABSTRACT

Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Administration, Oral , Alkaloids/analysis , Animals , COVID-19 , Chromatography, High Pressure Liquid , Flavonoids/analysis , Mice , SARS-CoV-2 , Saponins/analysis , Triterpenes/analysis
14.
Food Chem Toxicol ; 149: 111998, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1139497

ABSTRACT

Corona Virus Disease 2019 (COVID-19) has spread all over the world and brings significantly negative effects on human health. To fight against COVID-19 in a more efficient way, drug-drug or drug-herb combinations are frequently used in clinical settings. The concomitant use of multiple medications may trigger clinically relevant drug/herb-drug interactions. This study aims to assay the inhibitory potentials of Qingfei Paidu decoction (QPD, a Chinese medicine compound formula recommended for combating COVID-19 in China) against human drug-metabolizing enzymes and to assess the pharmacokinetic interactions in vivo. The results demonstrated that QPD dose-dependently inhibited CYPs1A, 2A6, 2C8, 2C9, 2C19, 2D6 and 2E1 but inhibited CYP3A in a time- and NADPH-dependent manner. In vivo test showed that QPD prolonged the half-life of lopinavir (a CYP3A substrate-drug) by 1.40-fold and increased the AUC of lopinavir by 2.04-fold, when QPD (6 g/kg) was co-administrated with lopinavir (160 mg/kg) to rats. Further investigation revealed that Fructus Aurantii Immaturus (Zhishi) in QPD caused significant loss of CYP3A activity in NADPH-generating system. Collectively, our findings revealed that QPD potently inactivated CYP3A and significantly modulated the pharmacokinetics of CYP3A substrate-drugs, which would be very helpful for the patients and clinicians to avoid potential drug-interaction risks in COVID-19 treatment.


Subject(s)
COVID-19/drug therapy , Cytochrome P-450 CYP3A/metabolism , Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Animals , Area Under Curve , China , Drugs, Chinese Herbal/therapeutic use , Lopinavir/pharmacokinetics , Male , Microsomes, Liver , NADP/metabolism , Phytotherapy , Rats, Sprague-Dawley , SARS-CoV-2
15.
Phytomedicine ; 85: 153315, 2021 May.
Article in English | MEDLINE | ID: covidwho-752997

ABSTRACT

BACKGROUND: The traditional Chinese medicine (TCM) formula Qing-Fei-Pai-Du decoction (QFPDD) was the most widely used prescription in China's campaign to contain COVID-19, which has exhibited positive effects. However, the underlying mode of action is largely unknown. PURPOSE: A systems pharmacology strategy was proposed to investigate the mechanisms of QFPDD against COVID-19 from molecule, pathway and network levels. STUDY DESIGN AND METHODS: The systems pharmacological approach consisted of text mining, target prediction, data integration, network study, bioinformatics analysis, molecular docking, and pharmacological validation. Especially, we proposed a scoring method to measure the confidence of targets identified by prediction and text mining, while a novel scheme was used to identify important targets from 4 aspects. RESULTS: 623 high-confidence targets of QFPDD's 12 active compounds were identified, 88 of which were overlapped with genes affected by SARS-CoV-2 infection. These targets were found to be involved in biological processes related with the development of COVID-19, such as pattern recognition receptor signaling, interleukin signaling, cell growth and death, hemostasis, and injuries of the nervous, sensory, circulatory, and digestive systems. Comprehensive network and pathway analysis were used to identify 55 important targets, which regulated 5 functional modules corresponding to QFPDD's effects in immune regulation, anti-infection, anti-inflammation, and multi-organ protection, respectively. Four compounds (baicalin, glycyrrhizic acid, hesperidin, and hyperoside) and 7 targets (AKT1, TNF-α, IL6, PTGS2, HMOX1, IL10, and TP53) were key molecules related to QFPDD's effects. Molecular docking verified that QFPDD's compounds may bind to 6 host proteins that interact with SARS-CoV-2 proteins, further supported the anti-virus effect of QFPDD. At last, in intro experiments validated QFPDD's important effects, including the inhibition of IL6, CCL2, TNF-α, NF-κB, PTGS1/2, CYP1A1, CYP3A4 activity, the up-regulation of IL10 expression, and repressing platelet aggregation. CONCLUSION: This work illustrated that QFPDD could exhibit immune regulation, anti-infection, anti-inflammation, and multi-organ protection. It may strengthen the understanding of QFPDD and facilitate more application of this formula in the campaign to SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , COVID-19/drug therapy , Computational Biology , Flavonoids/pharmacology , Glycyrrhizic Acid/pharmacology , Hesperidin/pharmacology , Humans , Male , Medicine, Chinese Traditional , Mice , Molecular Docking Simulation , Quercetin/analogs & derivatives , Quercetin/pharmacology , RAW 264.7 Cells , Rabbits , Signal Transduction/drug effects
16.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3726-3739, 2020 Aug.
Article in Chinese | MEDLINE | ID: covidwho-745644

ABSTRACT

This study is to explore the effect of Qingfei Paidu Decoction(QPD) on the host metabolism and gut microbiome of rats with metabolomics and 16 S rDNA sequencing. Based on 16 S rDNA sequencing of gut microbiome and metabolomics(GC-MS and LC-MS/MS), we systematically studied the serum metabolites profile and gut microbiota composition of rats treated with QPD for continued 5 days by oral gavage. A total of 23 and 43 differential metabolites were identified based on QPD with GC-MS and LC-MS/MS, respectively. The involved metabolic pathways of these differential metabolites included glycerophospholipid metabolism, linoleic acid metabolism, TCA cycle and pyruvate metabolism. Meanwhile, we found that QPD significantly regulated the composition of gut microbiota in rats, such as enriched Romboutsia, Turicibacter, and Clostridium_sensu_stricto_1, and decreased norank_f_Lachnospiraceae. Our current study indicated that short-term intervention of QPD could significantly regulate the host metabolism and gut microbiota composition of rats dose-dependently, suggesting that the clinical efficacy of QPD may be related with the regulation on host metabolism and gut microbiome.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Bacteria/classification , Chromatography, Liquid , Metabolomics , Rats , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL