Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Immunol ; 22(12): 1490-1502, 2021 12.
Article in English | MEDLINE | ID: covidwho-1454796

ABSTRACT

Despite extensive studies into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the effect of maternal infection on the neonate is unclear. To investigate this, we characterized the immunology of neonates born to mothers with confirmed SARS-CoV-2 infection during pregnancy. Here we show that maternal SARS-CoV-2 infection affects the neonatal immune system. Despite similar proportions of B cells, CD4+ T cells and CD8+ T cells, increased percentages of natural killer cells, Vδ2+ γδ T cells and regulatory T cells were detected in neonates born to mothers with recent or ongoing infection compared with those born to recovered or uninfected mothers. Increased plasma cytokine levels were also evident in neonates and mothers within the recent or ongoing infection group. Cytokine functionality was enhanced in neonates born to SARS-CoV-2-exposed mothers, compared to those born to uninfected mothers. In most neonates, this immune imprinting was nonspecific, suggesting vertical transmission of SARS-CoV-2 is limited, a finding supported by a lack of SARS-CoV-2-specific IgM in neonates despite maternal IgG transfer.


Subject(s)
COVID-19/immunology , Infant, Newborn, Diseases/immunology , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Immunity, Innate/immunology , Immunoglobulin G/immunology , Infant, Newborn , Infant, Newborn, Diseases/diagnosis , Infant, Newborn, Diseases/virology , Killer Cells, Natural/immunology , Pregnancy , Pregnancy Complications, Infectious/virology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology
3.
Cancer Cell ; 39(2): 257-275.e6, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1009339

ABSTRACT

Given the immune system's importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients' immunophenotypes resemble those of non-virus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care.


Subject(s)
COVID-19/immunology , Neoplasms/immunology , Neoplasms/virology , Severe Acute Respiratory Syndrome/immunology , Adult , Aged , Aged, 80 and over , COVID-19/etiology , COVID-19/mortality , Female , Hematologic Neoplasms/immunology , Hematologic Neoplasms/mortality , Hematologic Neoplasms/therapy , Hematologic Neoplasms/virology , Humans , Immunophenotyping , Male , Middle Aged , Nasopharynx/virology , Neoplasms/mortality , Neoplasms/therapy , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes/virology , Virus Shedding , Young Adult
4.
Nat Med ; 26(10): 1623-1635, 2020 10.
Article in English | MEDLINE | ID: covidwho-717130

ABSTRACT

Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Dendritic Cells/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Aged , B-Lymphocyte Subsets/immunology , Basophils/immunology , Betacoronavirus , COVID-19 , Case-Control Studies , Cell Cycle , Chemokine CXCL10/immunology , Chemokines/immunology , Cohort Studies , Coronavirus Infections/blood , Disease Progression , Female , Flow Cytometry , Hospitalization , Humans , Immunologic Memory , Immunophenotyping , Interleukin-10/immunology , Interleukin-6/immunology , Leukocyte Count , Lymphocyte Activation/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Prognosis , SARS-CoV-2 , Severity of Illness Index , T-Lymphocyte Subsets/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL