Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1799028


BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.

Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/therapy , Kidney/virology , Lung/virology , Mice , SARS-CoV-2
Proc Natl Acad Sci U S A ; 119(14): e2119093119, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1751830


SignificanceUsing SARS-CoV-2 as a relevant case study for infectious disease, we investigate the structure-function relationships that dictate antiviral spherical nucleic acid (SNA) vaccine efficacy. We show that the SNA architecture can be rapidly employed to target COVID-19 through incorporation of the receptor-binding domain, and that the resulting vaccine potently activates human cells in vitro and mice in vivo. Furthermore, when challenged with a lethal viral infection, only mice treated with the SNA vaccine survived. Taken together, this work underscores the importance of rational vaccine design for infectious disease to yield vaccines that elicit more potent immune responses to effectively fight disease.

Communicable Disease Control , Nucleic Acids/immunology , Vaccines, DNA/immunology , Animals , Biotechnology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Diseases/etiology , Communicable Diseases/immunology , Humans , Nucleic Acids/chemistry , SARS-CoV-2/immunology , Vaccine Development , Vaccines, DNA/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology
Hum Pathol ; 113: 92-103, 2021 07.
Article in English | MEDLINE | ID: covidwho-1201239


Information on bronchoalveolar lavage (BAL) in patients with COVID-19 is limited, and clinical correlation has not been reported. This study investigated the key features of BAL fluids from COVID-19 patients and assessed their clinical significance. A total of 320 BAL samples from 83 COVID-19 patients and 70 non-COVID-19 patients (27 patients with other respiratory viral infections) were evaluated, including cell count/differential, morphology, flow cytometric immunophenotyping, and immunohistochemistry. The findings were correlated with clinical outcomes. Compared to non-COVID-19 patients, BAL from COVID-19 patients was characterized by significant lymphocytosis (p < 0.001), in contrast to peripheral blood lymphopenia commonly observed in COVID-19 patients and the presence of atypical lymphocytes with plasmacytoid/plasmablastic features (p < 0.001). Flow cytometry and immunohistochemistry demonstrated that BAL lymphocytes, including plasmacytoid and plasmablastic cells, were composed predominantly of T cells with a mixture of CD4+ and CD8+ cells. Both populations had increased expression of T-cell activation markers, suggesting important roles of helper and cytotoxic T-cells in the immune response to SARS-CoV-2 infection in the lung. More importantly, BAL lymphocytosis was significantly associated with longer hospital stay (p < 0.05) and longer requirement for mechanical ventilation (p < 0.05), whereas the median atypical (activated) lymphocyte count was associated with shorter hospital stay (p < 0.05), shorter time on mechanical ventilation (p < 0.05) and improved survival. Our results indicate that BAL cellular analysis and morphologic findings provide additional important information for diagnostic and prognostic work-up, and potential new therapeutic strategies for patients with severe COVID-19.

Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lung/immunology , Adult , Aged , Aged, 80 and over , Bronchoalveolar Lavage Fluid/cytology , Female , Humans , Male , Middle Aged , SARS-CoV-2