Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-329471

ABSTRACT

The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients. We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls. We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.

2.
Nat Commun ; 13(1): 1018, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702467

ABSTRACT

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


Subject(s)
COVID-19/immunology , Adult , Aged , Aged, 80 and over , Ambulatory Care , Cytokines/blood , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Interferons/immunology , Killer Cells, Natural/immunology , Longitudinal Studies , Male , Middle Aged , Monocytes/immunology , Nasopharynx/immunology , Nasopharynx/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunology
3.
Virology ; 569: 37-43, 2022 04.
Article in English | MEDLINE | ID: covidwho-1692814

ABSTRACT

Risk factors for disease progression and severity of SARS-CoV-2 infections require an understanding of acute and long-term virological and immunological dynamics. Fifty-one RT-PCR positive COVID-19 outpatients were recruited between May and December 2020 in Munich, Germany, and followed up at multiple defined timepoints for up to one year. RT-PCR and viral culture were performed and seroresponses measured. Participants were classified applying the WHO clinical progression scale. Short symptom to test time (median 5.0 days; p = 0.0016) and high viral loads (VL; median maximum VL: 3∙108 copies/mL; p = 0.0015) were indicative for viral culture positivity. Participants with WHO grade 3 at baseline had significantly higher VLs compared to those with WHO 1 and 2 (p = 0.01). VLs dropped fast within 1 week of symptom onset. Maximum VLs were positively correlated with the magnitude of Ro-N-Ig seroresponse (p = 0.022). Our results describe the dynamics of VLs and antibodies to SARS-CoV-2 in mild to moderate cases that can support public health measures during the ongoing global pandemic.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/physiology , Viral Load , Adolescent , Adult , COVID-19/complications , Child , Cohort Studies , Host-Pathogen Interactions , Humans , Longitudinal Studies , Middle Aged , Outpatients , Pandemics , Serologic Tests/methods , Symptom Assessment , Young Adult
4.
Science ; 375(6582): 782-787, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1650668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cross Reactions , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Front Immunol ; 12: 688436, 2021.
Article in English | MEDLINE | ID: covidwho-1259348

ABSTRACT

Background: Adaptive immune responses to structural proteins of the virion play a crucial role in protection against coronavirus disease 2019 (COVID-19). We therefore studied T cell responses against multiple SARS-CoV-2 structural proteins in a large cohort using a simple, fast, and high-throughput approach. Methods: An automated interferon gamma release assay (IGRA) for the Nucleocapsid (NC)-, Membrane (M)-, Spike-C-terminus (SCT)-, and N-terminus-protein (SNT)-specific T cell responses was performed using fresh whole blood from study subjects with convalescent, confirmed COVID-19 (n = 177, more than 200 days post infection), exposed household members (n = 145), and unexposed controls (n = 85). SARS-CoV-2-specific antibodies were assessed using Elecsys® Anti-SARS-CoV-2 (Ro-N-Ig) and Anti-SARS-CoV-2-ELISA (IgG) (EI-S1-IgG). Results: 156 of 177 (88%) previously PCR confirmed cases were still positive by Ro-N-Ig more than 200 days after infection. In T cells, most frequently the M-protein was targeted by 88% seropositive, PCR confirmed cases, followed by SCT (85%), NC (82%), and SNT (73%), whereas each of these antigens was recognized by less than 14% of non-exposed control subjects. Broad targeting of these structural virion proteins was characteristic of convalescent SARS-CoV-2 infection; 68% of all seropositive individuals targeted all four tested antigens. Indeed, anti-NC antibody titer correlated loosely, but significantly with the magnitude and breadth of the SARS-CoV-2-specific T cell response. Age, sex, and body mass index were comparable between the different groups. Conclusion: SARS-CoV-2 seropositivity correlates with broad T cell reactivity of the structural virus proteins at 200 days after infection and beyond. The SARS-CoV-2-IGRA can facilitate large scale determination of SARS-CoV-2-specific T cell responses with high accuracy against multiple targets.


Subject(s)
COVID-19/immunology , Interferon-gamma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Viral Structural Proteins/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Interferon-gamma Release Tests , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL