Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Curr Opin Allergy Clin Immunol ; 21(6): 525-534, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1447630


PURPOSE OF REVIEW: The clinical outcomes from COVID-19 in monogenic causes of predominant antibody deficiency have pivotal implications for our understanding of the antiviral contribution of humoral immunity. This review summarizes the lessons learned from COVID-19 infection in X-linked agammaglobulinemia (XLA) due to genetic defects in Bruton's tyrosine kinase (BTK). RECENT FINDINGS: Key molecular pathways underlying the development of severe COVID-19 are emerging, highlighting the possible contribution of BTK to hyperinflammation. SARS-CoV-2 specific T-cell responses and complement activation appear insufficient to achieve viral clearance in some B-cell deficient individuals. Whilst appearing efficacious in this group, use of convalescent plasma has been recently associated with the evolution of viral escape variants. Early data suggests individuals with XLA can mount a viral-specific T-cell vaccine response, however, the clinical significance of this is still emerging. SUMMARY: In contrast to reports made early in the pandemic, we show XLA patients remain susceptible to severe disease. Persistent infection was common and is likely to carry a significant symptom burden and risk of novel variant evolution. COVID-19 infection in this vulnerable, antibody deficient group due to genetic, therapeutic or disease causes may require prompt and specific intervention for both patient and societal benefit.

Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinemia/complications , COVID-19/immunology , Genetic Diseases, X-Linked/complications , SARS-CoV-2/immunology , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , COVID-19/diagnosis , COVID-19/virology , Evolution, Molecular , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index
J Allergy Clin Immunol ; 147(2): 520-531, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-792893


BACKGROUND: There is uncertainty about the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with rare inborn errors of immunity (IEI), a population at risk of developing severe coronavirus disease 2019. This is relevant not only for these patients but also for the general population, because studies of IEIs can unveil key requirements for host defense. OBJECTIVE: We sought to describe the presentation, manifestations, and outcome of SARS-CoV-2 infection in IEI to inform physicians and enhance understanding of host defense against SARS-CoV-2. METHODS: An invitation to participate in a retrospective study was distributed globally to scientific, medical, and patient societies involved in the care and advocacy for patients with IEI. RESULTS: We gathered information on 94 patients with IEI with SARS-CoV-2 infection. Their median age was 25 to 34 years. Fifty-three patients (56%) suffered from primary antibody deficiency, 9 (9.6%) had immune dysregulation syndrome, 6 (6.4%) a phagocyte defect, 7 (7.4%) an autoinflammatory disorder, 14 (15%) a combined immunodeficiency, 3 (3%) an innate immune defect, and 2 (2%) bone marrow failure. Ten were asymptomatic, 25 were treated as outpatients, 28 required admission without intensive care or ventilation, 13 required noninvasive ventilation or oxygen administration, 18 were admitted to intensive care units, 12 required invasive ventilation, and 3 required extracorporeal membrane oxygenation. Nine patients (7 adults and 2 children) died. CONCLUSIONS: This study demonstrates that (1) more than 30% of patients with IEI had mild coronavirus disease 2019 (COVID-19) and (2) risk factors predisposing to severe disease/mortality in the general population also seemed to affect patients with IEI, including more younger patients. Further studies will identify pathways that are associated with increased risk of severe disease and are nonredundant or redundant for protection against SARS-CoV-2.

COVID-19/epidemiology , Genetic Diseases, Inborn/epidemiology , Immunologic Deficiency Syndromes/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Risk Factors , Severity of Illness Index , Young Adult