Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Open Forum Infectious Diseases ; 8(SUPPL 1):S488-S489, 2021.
Article in English | EMBASE | ID: covidwho-1746375


Background. The recent pandemic of CoVid19 has increased our need to assess the impact of disinfectants on the inactivation of human coronaviruses. The goals of this study were 1) quantify the disinfection of SARS-CoV-2 and human coronavirus 229 inactivations by various quaternary ammonium formulations, and 2) demonstrate the impact of disinfectants on preventing fomite-to-finger transfer of coronaviruses. Methods. We compared the inactivation of both SARS-Covid -2 and coronavirus 229E suspended in 5% fetal calf sera and dried on both metal and plastic surfaces. In addition, studies were conducted with a silinated quaternary ammonium compound that left a residual on the surface. Studies were also conducted on the finger transfer of coronavirus from various surfaces. The virus was allowed to dry on the surface for 30 minutes, then a transfer was conducted by placing the finger pad directly onto the contaminated surface. The finger was tested for the virus. The study was then repeated with virus-contaminated porcelain surfaces that were sprayed with a quaternary product or placed on a surface with a quaternary ammonium compound that left a residual. Results. Several readily available quaternary ammonium formulations were evaluated and proved to be effective with greater than a 99.9% reduction in titer after drying on both metal and plastic surfaces. In addition, a silinated quaternary ammonium compound that left a residual on the surface was capable of inactivating SARS-CoV-2 for at least seven days after application. Studies on the finger transfer of coronavirus from various surfaces showed that the amount of virus transfer to the finger varied from 0.46 to 49.0% depending upon the surface. Little or no virus transfer occurred from treated surfaces compared to the untreated controls. In addition, coronavirus 229E appears to be a good model for use in disinfection assessments for SARS-CoV-2. Conclusion. Our results demonstrate that various quaternary ammonium disinfectant formulations are effective against human coronaviruses. Finger transfer tests showed that transmission of coronavirus from surfaces can be prevented, reducing the risk of fomite transmission. Coronavirus 229E appears to be a good model for use in disinfection assessments for SARS-CoV-2.

J Appl Microbiol ; 131(6): 2705-2714, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1202334


The goal of good toilet hygiene is minimizing the potential for pathogen transmission. Control of odours is also socially important and believed to be a societal measure of cleanliness. Understanding the need for good cleaning and disinfecting is even more important today considering the potential spread of emerging pathogens such as SARS-CoV-2 virus. While the flush toilet was a major advancement in achieving these objectives, exposure to pathogens can occur from failure to clean and disinfect areas within a restroom, as well as poor hand hygiene. The build-up of biofilm within a toilet bowl/urinal including sink can result in the persistence of pathogens and odours. During flushing, pathogens can be ejected from the toilet bowl/urinal/sink and be transmitted by inhalation and contaminated fomites. Use of automatic toilet bowl cleaners can reduce the number of microorganisms ejected during a flush. Salmonella bacteria can colonize the underside of the rim of toilets and persist up to 50 days. Pathogenic enteric bacteria appear in greater numbers in the biofilm found in toilets than in the water. Source tracking of bacteria in homes has demonstrated that during cleaning enteric bacteria are transferred from the toilet to the bathroom sinks and that these same bacteria colonize cleaning tools used in the restroom. Quantitative microbial risk assessment has shown that significant risks exist from both aerosols and fomites in restrooms. Cleaning with soaps and detergents without the use of disinfectants in public restrooms may spread bacteria and viruses throughout the restroom. Odours in restrooms are largely controlled by ventilation and flushing volume in toilet/urinals. However, this results in increased energy and water usage. Contamination of both the air and surfaces in restrooms is well documented. Better quantification of the risks of infection are needed as this will help determine what interventions will minimize these risks.

Bathroom Equipment , COVID-19 , Humans , Hygiene , SARS-CoV-2 , Toilet Facilities