Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Clin Immunol ; 42(2): 232-239, 2022 02.
Article in English | MEDLINE | ID: covidwho-1838372

ABSTRACT

PURPOSE: To study the effect of interferon-α2 auto-antibodies (IFN-α2 Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α2 Abs transfer during convalescent plasma treatment. METHODS: Sera from healthy controls, cases of COVID-19, and other respiratory illness were tested for IFN-α2 Abs by ELISA and a pseudo virus-based neutralization assay. The effects of disease severity, sex, and age on the risk of having neutralizing IFN-α2 Abs were determined. Longitudinal analyses were performed to determine association between IFN-α2 Abs and survival and viral load and whether serum IFN-α2 Abs appeared after convalescent plasma transfusion. RESULTS: IFN-α2 neutralizing sera were found only in COVID-19 patients, with proportions increasing with disease severity and age. In the acute stage of COVID-19, all sera from patients with ELISA-detected IFN-α2 Abs (13/164, 7.9%) neutralized levels of IFN-α2 exceeding physiological concentrations found in human plasma and this was associated with delayed viral clearance. Convalescent plasma donors that were anti-IFN-α2 ELISA positive (3/118, 2.5%) did not neutralize the same levels of IFN-α2. Neutralizing serum IFN-α2 Abs were associated with delayed viral clearance from the respiratory tract. CONCLUSIONS: IFN-α2 Abs were detected by ELISA and neutralization assay in COVID-19 patients, but not in ICU patients with other respiratory illnesses. The presence of neutralizing IFN-α2 Abs in critically ill COVID-19 is associated with delayed viral clearance. IFN-α2 Abs in COVID-19 convalescent plasma donors were not neutralizing in the conditions tested.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , COVID-19/therapy , Interferon alpha-2/immunology , Plasma/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Blood Component Transfusion/methods , Critical Illness , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology
2.
J Allergy Clin Immunol ; 2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1783444

ABSTRACT

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We studied humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult IEI patients. METHODS: In a prospective, controlled, multicenter study 505 IEI patients (common variable immunodeficiency (CVID), isolated or undefined antibody deficiencies, X-linked agammaglobulinemia (XLA), combined immunodeficiency (CID), phagocyte defects) and 192 controls were included. All participants received two doses of the mRNA-1273 COVID-19 vaccine. Levels of SARS-CoV-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to healthy controls, but seroconversion rates in patients with more severe IEI, like CVID and CID, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to controls in all IEI cohorts, with the exception of CVID patients. The presence of non-infectious complications and the use of immunosuppressive drugs in CVID patients were negatively correlated with the antibody response. CONCLUSION: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with CID and CVID. Lowest response was detected in XLA and in CVID patients with non-infectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision-making for additional vaccinations.

3.
Front Immunol ; 13: 845887, 2022.
Article in English | MEDLINE | ID: covidwho-1775679

ABSTRACT

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Subject(s)
COVID-19 , Vaccinia virus , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccinia virus/genetics
4.
The Journal of Heart and Lung Transplantation ; 2022.
Article in English | ScienceDirect | ID: covidwho-1739750

ABSTRACT

BACKGROUND : Serological responses to COVID-19 vaccination are diminished in recipients of solid organ transplants, especially in lung transplant recipients (LTR), probably as result of immunosuppressive treatment. There is currently no marker of immunosuppression that can be used to predict the COVID-19 vaccination response. Here, we study whether torque tenovirus (TTV), a highly prevalent virus can be used as an indicator of immunosuppression. METHODS : The humoral response to the mRNA 1273 vaccine was assessed in 103 LTR, who received a transplant between 4 and 237 months prior to vaccination, by measuring Spike (S)-specific IgG levels at baseline, 28 days after first, and 28 days after the second vaccination. TTV loads were determined by RT-PCR and Pearson's correlation coefficient was calculated to correlate serological responses to TTV load. RESULTS : Humoral responses to COVID-19 vaccination were observed in 41/103 (40%) LTR at 28 days after the second vaccination. 62/103 (60%) were non-responders. Lower TTV loads at baseline (significantly) correlated with higher S-specific antibodies and a higher percentage of responders. Lower TTV loads also strongly correlated with longer time since transplantation, indicating that participants with lower TTV loads were longer after transplantation. CONCLUSIONS : This study shows a better humoral response to the SARS-CoV-2 vaccine in subjects with a lower TTV load pre-vaccination. In addition, TTV load correlates with the time after transplantation. Further studies on the use of TTV load in vaccination efficacy studies in immunocompromised cohorts should provide leads for the potential use of this marker for optimizing vaccination response.

5.
Nat Rev Clin Oncol ; 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1740445

ABSTRACT

Patients with cancer have a higher risk of severe coronavirus disease (COVID-19) and associated mortality than the general population. Owing to this increased risk, patients with cancer have been prioritized for COVID-19 vaccination globally, for both primary and booster vaccinations. However, given that these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, and the extent of humoral and cellular immune responses in these patients, as well as the risks of vaccine-related adverse events. In this Review, we summarize the current knowledge generated in studies conducted since COVID-19 vaccines first became available. We also highlight critical points that might affect vaccine efficacy in patients with cancer in the future.

6.
Vaccine ; 40(15): 2251-2257, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1730146

ABSTRACT

BACKGROUND: With COVID-19 vaccine roll-out ongoing in many countries globally, monitoring of breakthrough infections is of great importance. Antibodies persist in the blood after a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since COVID-19 vaccines induce immune response to the Spike protein of the virus, which is the main serosurveillance target to date, alternative targets should be explored to distinguish infection from vaccination. METHODS: Multiplex immunoassay data from 1,513 SARS-CoV-2 RT-qPCR-tested individuals (352 positive and 1,161 negative) without COVID-19 vaccination history were used to determine the accuracy of Nucleoprotein-specific immunoglobulin G (IgG) in detecting past SARS-CoV-2 infection. We also described Spike S1 and Nucleoprotein-specific IgG responses in 230 COVID-19 vaccinated individuals (Pfizer/BioNTech). RESULTS: The sensitivity of Nucleoprotein seropositivity was 85% (95% confidence interval: 80-90%) for mild COVID-19 in the first two months following symptom onset. Sensitivity was lower in asymptomatic individuals (67%, 50-81%). Participants who had experienced a SARS-CoV-2 infection up to 11 months preceding vaccination, as assessed by Spike S1 seropositivity or RT-qPCR, produced 2.7-fold higher median levels of IgG to Spike S1 ≥ 14 days after the first dose as compared to those unexposed to SARS-CoV-2 at ≥ 7 days after the second dose (p = 0.011). Nucleoprotein-specific IgG concentrations were not affected by vaccination in infection-naïve participants. CONCLUSIONS: Serological responses to Nucleoprotein may prove helpful in identifying SARS-CoV-2 infections after vaccination. Furthermore, it can help interpret IgG to Spike S1 after COVID-19 vaccination as particularly high responses shortly after vaccination could be explained by prior exposure history.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
7.
Clin Infect Dis ; 74(7): 1271-1274, 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1706426

ABSTRACT

Twenty-five B-cell-depleted patients (24 following anti-CD19/20 therapy) diagnosed with coronavirus disease 2019 had been symptomatic for a median of 26 days but remained antibody negative. All were treated with convalescent plasma with high neutralizing antibody titers. Twenty-one (84%) recovered, indicating the potential therapeutic effects of this therapy in this particular population.


Subject(s)
COVID-19 , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2
8.
Sci Immunol ; 7(69): eabo2202, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1673343

ABSTRACT

The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2-specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans
9.
J Clin Immunol ; 42(2): 232-239, 2022 02.
Article in English | MEDLINE | ID: covidwho-1669888

ABSTRACT

PURPOSE: To study the effect of interferon-α2 auto-antibodies (IFN-α2 Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α2 Abs transfer during convalescent plasma treatment. METHODS: Sera from healthy controls, cases of COVID-19, and other respiratory illness were tested for IFN-α2 Abs by ELISA and a pseudo virus-based neutralization assay. The effects of disease severity, sex, and age on the risk of having neutralizing IFN-α2 Abs were determined. Longitudinal analyses were performed to determine association between IFN-α2 Abs and survival and viral load and whether serum IFN-α2 Abs appeared after convalescent plasma transfusion. RESULTS: IFN-α2 neutralizing sera were found only in COVID-19 patients, with proportions increasing with disease severity and age. In the acute stage of COVID-19, all sera from patients with ELISA-detected IFN-α2 Abs (13/164, 7.9%) neutralized levels of IFN-α2 exceeding physiological concentrations found in human plasma and this was associated with delayed viral clearance. Convalescent plasma donors that were anti-IFN-α2 ELISA positive (3/118, 2.5%) did not neutralize the same levels of IFN-α2. Neutralizing serum IFN-α2 Abs were associated with delayed viral clearance from the respiratory tract. CONCLUSIONS: IFN-α2 Abs were detected by ELISA and neutralization assay in COVID-19 patients, but not in ICU patients with other respiratory illnesses. The presence of neutralizing IFN-α2 Abs in critically ill COVID-19 is associated with delayed viral clearance. IFN-α2 Abs in COVID-19 convalescent plasma donors were not neutralizing in the conditions tested.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , COVID-19/therapy , Interferon alpha-2/immunology , Plasma/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Blood Component Transfusion/methods , Critical Illness , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology
11.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1642068

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Subject(s)
/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , /immunology , Adult , Antibodies, Neutralizing/blood , Female , Humans , Interferon-gamma/blood , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , T-Lymphocytes/immunology
12.
Lancet Oncol ; 22(12): 1681-1691, 2021 12.
Article in English | MEDLINE | ID: covidwho-1586209

ABSTRACT

BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 µg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development.


Subject(s)
/adverse effects , Antineoplastic Agents/immunology , Immunotherapy , Neoplasms/therapy , Vaccination/adverse effects , /administration & dosage , Aged , Antibodies, Viral/blood , Antineoplastic Agents/therapeutic use , COVID-19/prevention & control , Cohort Studies , Combined Modality Therapy , Female , Humans , Immunogenicity, Vaccine , Immunomodulation , Injections, Intramuscular , Interferon-gamma/metabolism , Male , Middle Aged , Neoplasms/immunology , Netherlands , Prospective Studies , SARS-CoV-2/immunology , Surveys and Questionnaires
13.
Emerg Microbes Infect ; 11(1): 91-94, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541488

ABSTRACT

In order to assess the risk of SARS-CoV-2 infection, transmission and reservoir development in swine, we combined results of an experimental and two observational studies. First, intranasal and intratracheal challenge of eight pigs did not result in infection, based on clinical signs and PCR on swab and lung tissue samples. Two serum samples returned a low positive result in virus neutralization, in line with findings in other infection experiments in pigs. Next, a retrospective observational study was performed in the Netherlands in the spring of 2020. Serum samples (N =417) obtained at slaughter from 17 farms located in a region with a high human case incidence in the first wave of the pandemic. Samples were tested with protein micro array, plaque reduction neutralization test and receptor-binding-domain ELISA. None of the serum samples was positive in all three assays, although six samples from one farm returned a low positive result in PRNT (titers 40-80). Therefore we conclude that serological evidence for large scale transmission was not observed. Finally, an outbreak of respiratory disease in pigs on one farm, coinciding with recent exposure to SARS-CoV-2 infected animal caretakers, was investigated. Tonsil swabs and paired serum samples were tested. No evidence for infection with SARS-CoV-2 was found. In conclusion, Although in both the experimental and the observational study few samples returned low antibody titer results in PRNT infection with SARS-CoV-2 was not confirmed. It was concluded that sporadic infections in the field cannot be excluded, but large-scale SARS-CoV-2 transmission among pigs is unlikely.


Subject(s)
COVID-19/veterinary , SARS-CoV-2/physiology , Swine Diseases/epidemiology , Swine Diseases/transmission , Swine Diseases/virology , Animals , Environmental Exposure , Netherlands/epidemiology , Public Health Surveillance , Retrospective Studies , Swine
14.
Transplantation ; 106(4): 821-834, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1511132

ABSTRACT

BACKGROUND: In kidney patients COVID-19 is associated with severely increased morbidity and mortality. A comprehensive comparison of the immunogenicity, tolerability, and safety of COVID-19 vaccination in different cohorts of kidney patients and a control cohort is lacking. METHODS: This investigator driven, prospective, controlled multicenter study included 162 participants with chronic kidney disease (CKD) stages G4/5 (eGFR < 30 mL/min/1.73m2), 159 participants on dialysis, 288 kidney transplant recipients, and 191 controls. Participants received 2 doses of the mRNA-1273 COVID-19 vaccine (Moderna). The primary endpoint was seroconversion. RESULTS: Transplant recipients had a significantly lower seroconversion rate when compared with controls (56.9% versus 100%, P < 0.001), with especially mycophenolic acid, but also, higher age, lower lymphocyte concentration, lower eGFR, and shorter time after transplantation being associated with nonresponder state. Transplant recipients also showed significantly lower titers of neutralizing antibodies and T-cell responses when compared with controls. Although a high seroconversion rate was observed for participants with CKD G4/5 (100%) and on dialysis (99.4%), mean antibody concentrations in the CKD G4/5 cohort and dialysis cohort were lower than in controls (2405 [interquartile interval 1287-4524] and 1650 [698-3024] versus 3186 [1896-4911] BAU/mL, P = 0.06 and P < 0.001, respectively). Dialysis patients and especially kidney transplant recipients experienced less systemic vaccination related adverse events. No specific safety issues were noted. CONCLUSIONS: The immune response following vaccination in patients with CKD G4/5 and on dialysis is almost comparable to controls. In contrast, kidney transplant recipients have a poor response. In this latter, patient group development of alternative vaccination strategies are warranted.


Subject(s)
COVID-19 , Kidney Transplantation , Renal Insufficiency, Chronic , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Kidney Transplantation/adverse effects , Prospective Studies , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Vaccination
16.
Journal of Clinical Investigation ; 131(21):1-13, 2021.
Article in English | ProQuest Central | ID: covidwho-1503264

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2-specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing "original antigenic sin."

18.
EMBO Mol Med ; 13(12): e14544, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1478717

ABSTRACT

An essential step for SARS-CoV-2 infection is the attachment to the host cell receptor by its Spike receptor-binding domain (RBD). Most of the existing RBD-targeting neutralizing antibodies block the receptor-binding motif (RBM), a mutable region with the potential to generate neutralization escape mutants. Here, we isolated and structurally characterized a non-RBM-targeting monoclonal antibody (FD20) from convalescent patients. FD20 engages the RBD at an epitope distal to the RBM with a KD of 5.6 nM, neutralizes SARS-CoV-2 including the current Variants of Concern such as B.1.1.7, B.1.351, P.1, and B.1.617.2 (Delta), displays modest cross-reactivity against SARS-CoV, and reduces viral replication in hamsters. The epitope coincides with a predicted "ideal" vulnerability site with high functional and structural constraints. Mutation of the residues of the conserved epitope variably affects FD20-binding but confers little or no resistance to neutralization. Finally, in vitro mode-of-action characterization and negative-stain electron microscopy suggest a neutralization mechanism by which FD20 destructs the Spike. Our results reveal a conserved vulnerability site in the SARS-CoV-2 Spike for the development of potential antiviral drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Spike Glycoprotein, Coronavirus
19.
J Sleep Res ; 31(2): e13496, 2022 04.
Article in English | MEDLINE | ID: covidwho-1455623

ABSTRACT

This protocol describes an innovative study to investigate the relationship between sleep, shift work and the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]) vaccination. As the COVID-19 pandemic is a global crisis with devastating health, social and economic impacts, there is a pressing need for effective vaccination programmes. Previous influenza and hepatitis vaccination studies suggest that lack of sleep can negatively alter immune responsiveness, while circadian misalignment most likely may also play an important role in the immune response to vaccination. Our present study will be the first to address this question in actual shift workers and in relation to COVID-19 vaccination. We hypothesise that the occurrence of recent night shifts and diminished sleep will negatively alter the immune response to vaccination in shift workers compared to dayworkers. We aim to recruit 50 shift workers and 50 dayworkers. Participants will receive an mRNA-based vaccination, through the Dutch vaccination programme. To assess immune responsiveness, blood will be drawn at baseline (before first vaccination), 10 days after first vaccination, the day prior to the second vaccination; and 28 days, 6 and 12 months after the second vaccination. Actigraphy and daily sleep e-diaries will be implemented for 7 days around each vaccination to assess sleep. The Pittsburgh Sleep Quality Index will be used to monitor sleep in the long term. Optimising the efficacy of the COVID-19 vaccines is of outmost importance and results of this study could provide insights to develop sleep and circadian-based interventions to enhance vaccination immunity, and thereby improve global health.


Subject(s)
COVID-19 , Shift Work Schedule , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Pandemics/prevention & control , SARS-CoV-2 , Sleep
20.
J Clin Invest ; 131(21)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1403157

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2-specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing "original antigenic sin."


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Specificity , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Cross Reactions , Female , Host Microbial Interactions/immunology , Humans , Immunoglobulin G/blood , Longitudinal Studies , Male , Middle Aged , Pandemics , Phosphoproteins/immunology , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL